

THyGA Final Workshop

March 24th 2023

Testing Hydrogen admixture for Gas Applications

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

Please note that this presentation is slightly different from the document disclosed during the THyGA final workshop of the 24th of March 2023

Indeed, late results came up, especially regarding delayed ignition, which incited us to slightly modify the project's conclusions. Slides 111-113 are modified and slides 163-164 are added

We greatly encourage interested stakeholders to read the project reports, especially D3.8 to have a complete understanding of our analysis.

Agenda

9h00 / 9h15	Welcome, Introduction and rules to the workshop	Alexandra Kostereva
9h15 / 9h30	THyGA - Objectives and organization of the project	Patrick Milin
9h30 / 10h00, inc. question	WP4: certification for new appliances	Kris De Wit
10h00 / 11h20, inc. question	WP3: H2NG blends impact on appliances	Jean Schweitzer ; Henri Cuny
11h20 / 11h40	Coffee break	
11h40 / 12h30, inc. question	WP5: appliances on the field	Lisa Blanchard ; Stéphane Carpentier
12h30 / 13h00	Conclusions and perspectives	Alexandra Kostereva ; Patrick Milin

Welcome, Introduction and rules to the workshop Some information

The workshop is recorded and will be available on the THyGA website by the end of March.

 $\otimes \otimes$

You will find the reference to the related public deliverable in the corner of slides:

Building a roadmap for gas appliances Segmentation

Questions: please add your questions on the online chat. Speakers will take questions as time permits, and the team will respond to all questions in writing after the workshop.

Online survey: we will be using a sli.do to get some opinions from the audience

Join at slido.com #2963 366

à

Context: Hydrogen in the gas grid to decarbonise the European energy system

Hydrogen, along with green electricity from wind and solar power, is currently being discussed as a pathway to decarbonise the European energy systems. In this way, the CO₂ footprint of gas utilisation would be reduced, contributing to an overall reduction of greenhouse gas emissions.

Hydrogen injection in the gas grid

New challenge for end-use equipment... ...in particular for higher % of H₂ in blends >200 million residential and commercial gas appliances in Europe!

Project consortium: 9 partners in response to the Horizon 2020 call FCH-04-3-2019

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research

Objectives and organization of the THyGA project Expected results

CLOSE KNOWLEDGE GAPS

related to technical impacts on residential and commercial gas appliances. SUPPORT STANDARDIZATION ACTIVITIES

to answer the needs for new appliance operation, test gases, etc.

CLARIFY THE ACCEPTABLE HYDROGEN PERCENTAGE

that would not compromise safety and performance.

Work Packages

An extensive Advisory Panel Group and supporting manufacturers

The role of the Advisory Panel Group members is to advise the project to best achieve its goals of and fulfill expectations around THyGA, it implies a close follow-up of the project and its published results.

The targets of the projects...

The consortium of the THyGA project has been built to answer a call from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) published in 2019.

- European and National strategies were not ready to provide insight on acceptable percentage of blended hydrogen
- The target set by the European Commission were to assess <u>up to 60%vol H2</u> in NG

Low, medium and high hydrogen concentrations in natural gas should be investigated: Low = <10% Vol. Medium = 10-30% Vol. High = 30-60% Vol.

In 2020, when the project started, the FCH 2 JU already asked for a focus on « <u>below 40%</u> »

... and the Stakeholders' opinion

During the first public event, in 2020, a survey was sent to the attendees: 93% of the answers predicted blends **lower or equal to 30%H2**

Which level of hydrogen admixture do you consider realistic for 2030 in the distribution grids?

Which level of hydrogen admixture do you consider realistic for 2050 in the distribution grids?

And today, in 2023, which are your perspectives?

Objectives and organization of the THyGA project Plan of today's workshop

Starting point: segmentation and state-of-the-art Segmentation (1/2)

- A wide variety of appliances on the field
- They have each their own specificities (combustion, controls, design, usage...)

THyGA

D2.1

D2.3

Source: GRDF/CEGIBAT

01-06-2023 01-06-2023

Segmentation (2/2)

 We defined ~60 appliances type/technologies segments (Boilers, water heaters, cookers, catering, space heaters, CHP, GHP, others)

THyGA Segment	Type of appliance	Category	Burner type	Standard	Total Appliance Population	THyGA Segment	Type of appliance	Category	Burner type	Standard	Total Appliance Population	
101			Partial premix/conv (atmos. & fanned)		13 588	801		Commercial Dryers		EN 12752-1 and -2	unknown	
102	1	Open flued (former EN 297)	Low NOx technology burners		2 012	882		Infrared Radiant Heaters (former EN	non-domestic, tube radiant heaters	EN 416		
103	1		Full premix		152			416-1)			-	
104	1	and a second	Partial premix/conv (atmos. & fanned)		25 333	803		419.1)	non-domestic, luminous radiant heaters	EN 419	1.000	
105	BOILERS	Room-sealed (former EN 483)	Low NOx technology burners	EN 15562	1 972	85.4	1	Infrared Radiant Heaters (former EN		and and	1000	
106	- Concerto	Construction of the Construction of the Construction	Full premix	La rova	1 781	804	OTHER	777-1)	non-domestic, tube radiant heaters	EN-110	1	
107		Freedom to the design of the state	Partial premix fanned		2 920	804bis	UTHER	Radiant strip	with fan driven burners and recirculation fans	EN 17175		
108	1	Condensing bouer (Jonner EN 677)	Full premix (including CCB)	Annual C Population Segment in polarization Segment in polarization Outward in polarization Outward in polarization anneed) 2012 152 801 Comunaccial Dryers In on. domestin anneed) 152 801 801 801 Intervent in polarization In on. domestin anneed) 152 801 801 801 Intervent in polarization In on. domestin anneed) 152 801 801 801 Intervent in polarization Intervent in pola	non-domestic, forced convection, fan, <300kW	EN 17082						
105	1	Forced-draught / Jet burser boiler	Jet burner		1 1 29	806		Air heaters (former EN 525)	non-domestic, forced convection, <300kW	EN 17082	1 000	
197		(former EN 303-3)		_	- * ****	807		Air Heaters <70kW (former EN778)	Ducted warm air; forced convection air heaters	EN 17082		
201		Instantaneous open flued	Partial premix/atmos	EN 26	14 945	808		domestic washing machines		EN 1518	2	
202	WATER	Instantaneous room-sealed	Partial premix fanned			809		domestic dryers		EN 1518	2	
203	HEATERS	Storage open flued	Partial premix/atmos	EN RG	3 1 2 1	301		Surface burner (cooklops) with	Single ring			
204		Storage room-sealed	Partial premix/fanned			302		atmospheric burner or "Venturi"	Single crown]	32 574	
501		Independent gas-fired convection	healing & decoration	EN 613	4 678	303		burner (vertical venturi burner)	Multi ring (mainly double or triple ring)]	-	
	1	Independent gas-fired convection		-		304		Surface burner (cooktops) with	Single ring			
502	Space	pace heaters type C	heating & decoration, balanced	EN 013	N 013 1 839 304	305	pa	partially premix burner (long horizonti	Single crows		1 352	
503	Heaters	Decorative fuel-effect gas	heating & decoration	EN 13278 + EN 509	2 5 2 9	306	COOKERS	seumu	Multi ring (mainly double or triple ring)	EN 10. F	-	
1 2020	1 1	appliance/burner				307	coontra	County Incomes "Inchester" (county	Atmospheric burner	CARGE CONTRACTOR	2 953	
504	4	heaters	heating & decoration	EN 14829	98	308		(reestanding ranges)	"Venturi" burner		3 633	
601		Stiring Engines			15	309		e Interster (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	27 712			
502		Internal Combestion Engine			41	310			Atmospheric burger		12,056	
603	CHP	Micro Gas Turting	heating & electricity production	EN 50455	Ť	311		(Lavity burner metal sheet (ovens,	"Venturi" borner		13 030	
604		PIMIC			5	312			Partially premixed	Standard Image: Constraint of the second	14 658	
605		SOFC			3	401		Characterization and much human	Circular burner with vertical slots	en ana su		
704		Engine HP		EN 16005	~	402		open ourners and wow ourners	Circular burner with holes	Em 200-2-1		
702	up	Advertice	Heating	1.000 Billion	60	403		Mixed ovens	Draught burners	CH 303 3 3		
703		Absorption		EN 12308		404	1	Ovens	Tubular or circular burners	CH 203-2-2	1	
102		Piper in the second				405		Matrixed italiant iterates (conner EX 10) non-domestic, luminous radiant heaters EN 419 1000 Marrared Radiant Steaters (former EX Ration strip non-domestic, lube radiant heaters 6N444 1000 Air heaters (former EX 1020) non-domestic, lube radiant heaters EN 1775 1000 Air heaters (former EX 1020) non-domestic, forced convection, fan, <300kW				
						406	CATERING	Fryers	Premix burner	EN 203-2-4	Population Population I and 2 Unknown I 000 I I I I I I I I I I I I I I I I I	unknown
						407		Salamanders / Rotissories	Ceramic or blue flame burners	EN 203-2-7		
						408	Air Heaters < 70kW (former EN77i) Dacked warm air; forced convection air heaters EN 17082 domestik washing machines EN 1518 EN 1518 domestik dryven EN 1518 EN 1518 surface barmer (cooktops) with atmospheric humer or 'Ventur'' burner (vertical venturi burner) Single crown En 1518 Surface barmer (cooktops) with atmospheric humer or 'Ventur'' burner (vertical venturi burner) Single crown En 1518 Surface burner (cooktops) with atmospheric humer or Ventur'' burner (loog horizontal senturi) Single crown En 1518 Surface burner (loog horizontal senturi) Single crown Single crown En 1518 Cooktops) with periatity prevex burner (loog horizontal senturi) Single crown En 1518 Cavity burner "tubular" (ovens, freestanding ranges) Atmospheric burner En 203.2 Partialty premixed Circular burner with holes EN 203.2.1 Maxed ovens Draugh purnixed Circular burners EN 203.2.1 Oreits Tubular or circular burners EN 203.2.1 En 203.2.2.5 EN 203.2.11 EN 203.2.2.1 En 2011 EN 203.2.2.1 Corcular burners En 203.2.2.1 Delein					
						409		Covered burners (griddles, solid tops, pancake cookers)	Tubular burner or multi-ramp tubular burner	EN 203-2-9		
						440		Bachagenes	Characterit with furning turbos on Bolon on ten	EN 202 2 40		

THyGA

D2.1

D2.3

Starting point: segmentation and state-of-the-art

Expected impact of hydrogen admixture on combustion processes

 Many phenomena were discussed in literature, but a lot of discrepancies between researcher's opinions or discoveries → it confirms the need for an extensive and documented test campaign and sets tangible potential impacts to clarify → this is THyGA's strength

THyGA

D2.3

New appliances – certification & standardization (WP4)

Earlier use of hydrogen

- Relevant H₂ concentrations have already been supplied to gas appliances in the past
- Town gas = 1^{st} family of gases of EN 437
- Town gas contains about 50 % of H2
- Not used anymore in EU
- Lower supply pressure!

Worked well, but requirements became a lot stricter, and technologies changed

- 1. Product certification
 - gas appliances:

- 2. <u>Regulation applicable to installed gas appliances</u>
 - national/regional regulation imposing efficiency and/or emission limits to be measured onsite

THyGA

01-06-2023

specific risk (i.e. light back)

THyGA

CERTIFICATION

- Gas Appliances Regulation (GAR) -

H₂NG is in the scope of Gas Appliances Regulation (EU) 2016/426

22

appropriate H₂ concentration ASAP to be adopted in quality specifications for distributed gases (cf. annex II of GAR) for which new appliances need to be designed is recommended for preparing the market ASAP for H₂NG supply

• existing appliances did not have to be designed for H_2NG supply $\Rightarrow H_2NG$ supply cannot be considered as **`normal use'** \Rightarrow **no product liability** by manufacturer

• NOTE: light back gas G222 (77% CH_4 + 23% H_2), used for decades in the current certification framework, does not demonstrate compliance with all ER as it is only a limit gas used for assessing a

- H₂NG supply may compromise an existing appliance's conformity to one or more essential requirements of GAR
- Appliances shall only be made available on the market and put into service if, when normally used, they comply with the GAR \Rightarrow used with a normal variation in the gas quality and a normal fluctuation in the supply pressure as set out by Member States (MS) in their communication (cf. GAR annex II)
- pressure(s) it is intended for
- The composition and specifications of the types of gas and the supply pressures at the place where an appliance is put into service is very important for its safe and correct functioning, therefore that aspect should be taken into consideration at the design phase of the appliance in order to ensure its compatibility with the gas type(s) and supply

Country	Vol% H2	<u>ک</u>
DE	≤ 10	ated
FR	< 6	nunic
ES 1	≤ 5	comn
AT	≤ 4	tions
LT	≤ 2	entra:
others	no information, not regulated, not measured	H ₂ conc

¹: for non-conventional gases

THyGA **STANDARDIZATION** - current framework and H2(NG) impact -

Figure 5 - European and international standardisation landscape for hydrogen topics

- Test gases, test pressures & appliance categories
 - TC 238 \rightarrow EN 437
- Gas appliance standards
 - TC 49 gas cooking appliances
 - TC 62 independent gas-fired space heaters
 - TC 106 large kitchen appliances
 - TC 109 central heating boilers
 - TC 180 decentralized gas heating
 - etc.
- Fitting standards
 - TC 58 safety and control devices

D4.1

D4.3

STANDARDIZATION – EN 437 definitions vs. H2NG –

- Gas family
 - group of gaseous fuels with similar burning behaviour linked together by a range of Wobbe indices
- Gas group
 - specified range of Wobbe index within that of the family concerned
 - this range is determined on the general principle that appliances using this gas group operate safely when burning all gases within this range without adjustment
 - adjustment of the appliance may be permitted in accordance with the special national or local conditions that apply in some countries
 - H-group: 46,44 MJ/m³ (= lower limit of the EASEE-gas CBP on H-gas) only allows for injecting 7 % of H₂
- <u>Appliance category</u>
 - means of identifying the gas families and/or gas groups for which a gas appliance is designed to operate safely and to the desired performance level
 - a fluctuating H₂ concentration may compromise the above definition as
 - it widens the potential WI range of the gases supplied to the appliance
 - relevant H₂ presence increases existing risks (cf. light-back, delayed ignition, ...)

THyGA

D4.1

D4.3

STANDARDIZATION - EN 437 test gases: limit gases -

				Premixed burner with comb. control	Premixed burner without comb. cor
Limit gas purpose	Natural gas (2 nd family — group H)	H ₂ NG (with 20% H ₂)	Comment	$\begin{array}{c} 70 & \text{CH}_4 / 30 \% \text{H}_2; \\ 60 & \lambda = 1.25 \\ 50 & \text{s}_1 = 37 \text{ cm/s} \\ \text{T}_{ad} = 1740 \ ^\circ\text{C} \end{array}$	$\begin{array}{c} 70 \\ 60 \\ \lambda = 1.385 \\ 50 \\ T_{ad} = 1618 \ ^{\circ}\text{C} \end{array}$
incomplete combustion and sooting	G21 (87% CH₄ + 13% C₃H ₈)	G21	as H_2 concentration may vary between 0 and 20%)	$\lambda = 1.25$	$\lambda = 1.25$
flame lift (flame instability)	G23 (92,5% CH ₄ + 7,5% N ₂)	G23 or Gxx	H_2 lowers WI, but flame speed increase compensates \Rightarrow to be calculated	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & s_{i} = 28 \text{ cm/s} \\ \hline T_{ad} = 1722 \text{ °C} \\ 0.5 & 0.7 & 0.9 & 1.1 \\ \hline \Psi (-) \end{array}$
light-back (flashback)	G222 (77% CH ₄ + 23% H ₂)	G22 (65% CH ₄ + 35% H ₂)	only for partial premixed burners + fully premixed burners equipped with combustion control	Same flame speed	Partially premixed cooking hob
		Gyy (G21 and/or G24 proposed)	for fully premixed burners	increase to be calculated as between G20 and	$\begin{array}{c} 60 \\ 50 \\ 50 \\ 51 \\ 100000000000000000000$
overheating	G24 (68% CH ₄ + 12% C ₃ H ₈ + 20% H ₂)	G24 ?	overload + increased flame speed	GZZZ!	$\begin{array}{c} 100 & \text{CH}, \\ 100 & \text{CH}, \\ \lambda = 0.8 \\ s_1 = 30 \text{ cm}, \\ T_{ef} = 1822 \end{array}$

1,5 $\Phi = 1/\lambda$

THyGA D4.1

D4.3

1.5 $\Phi = 1/\lambda$

- EN 437 test gases: reference gases –
- Test gases: reference gas
 - test gas with which appliances operate under nominal conditions when they are supplied at the corresponding normal pressure
 - current reference gas (for groups H and E):
 - G20 100% CH4 → used for assessing most of risks apart from extreme variations in gases the appliance has been designed for
 - H_2 presence may impact risks assessed with G20 \Rightarrow need for a 2nd reference gas
 - 2nd ref. gas: CH₄ with max. H₂ concentration

- Starting from the properties differences between H₂ and CH₄
- Risks related to
 - safety
 - performance
 - fitness for purpose

of appliances not specifically designed for $\rm H_2NG$ supply with $\rm H_2$ concentration varying between 0 and 20 %.

- Inked to table of GAR essential requirements and the findings of WP3 testing for 20% H₂NG
- NOTE: some of the risks may be (partially) compensated by other H₂ properties

Hydrogen vs. methane

Property	Unit	CH ₄	H ₂
Atomic radius	Å	H 0,25 C 0 <i>,</i> 70	H 0,25
Bond length	Å	1,09 (C-H bond)	0,74
Gross Calorific Value	MJ/m ³	37,78	12,1
Net Calorific Value	MJ/m ³	34,02	10,2
Relative density	-	0,56	0,07
Wobbe index (using GCV)	MJ/m ³	50,72	45,88
Laminar flame speed at $\lambda = 1$	cm/s	38,6	209,8
Adiabatic flame temperature $\lambda = 1$	°C	1.946	2.101
Flammability range in air	vol%	5 - 15	4 - 75
Min. air quantity for complete comb.	m³/m³	9,52	2,38
Min. ignition energy	mJ	0,28	0,02
Auto-ignition temperature	°C	595	560
Dewpoint temperature at $\lambda = 1$	°C	59	72
Explosion pressure (stoichiometric mixture)	bar	8	
Methane number	-	100	0
100 year GWP	x CO ₂	28	11
Other	-	-	pale blue flame

Significantly different properties of H2 introduces **risks** for **appliances not designed for** supply with gases containing **relevant H2 concentrations**!

15/15°C and 1013,25 mbar

THyGA

D4.1

D4.3

- risks related to H2NG supply -

⁻ Air min CH4/Air min Mix ---lambda = const

H ₂ property	Risk	Cause	Comments + evaluation for 20% H ₂ NG
CO conc. too h Lower min. air requirement Shutdowns Lower efficient	CO conc. too high	Flame instability due to increased air excess	20% H ₂ NG: generally no issue on factory settings
	Shutdowns	Flame lift due to air excess	20% H ₂ NG: generally no issue on factory settings
	Lower efficiency	Increased air excess lowering combustion (product) temperature	

- risks related to H2NG supply -

H ₂ property	Risk	Cause	Comments + evaluation for 20% H_2NG		
H ₂ lowers Wobbe index	Insufficient heat output	Lower heat input	20% H ₂ NG: 14% lower GCV partially compensated by increased gas flow \Rightarrow heat output – 5% \rightarrow no issue for most appliances		
(W _s) of NG	CO conc. too high				
	Overheating	Inappropriate onsite adjustment due to wider local W _a range	Full-premixed appliances: 20% H ₂ NG leads to issues 10% H ₂ NG seems to be OK		
	No ignition/extinction				

- risks related to H2NG supply -

Adequacy of G-222 as test gas for flashback for lean-premixed burners?

H ₂ property	Risk	Cause	Comments + evaluation for 20% H ₂ NG
High flame speed	Light-back (flashback)	Flame entering into burner due to faster propagation of flame front ⇒ disturbed equilibrium between flame speed and gas flow speed	Partially premixed appliances and appliances with combustion control more sensitive. Full- premixed appliances more sensitive for light- back with gases with higher W _s
	Material/product deterioration	Higher burner surface temperature due to flame front closer to orifice(s)	20% H ₂ NG: no issues detected, but case by case evaluation required

- risks related to H2NG supply -

H ₂ property	Risk	Cause	Comments + evaluation for 20% H ₂ NG
	Higher NO _x emissions	Thermal NO _x formation	Impact may be (partially) compensated by air excess increase 20% H ₂ NG: NOx emissions decreasing apart from some exceptions
Higher flame temperature	Material/product deterioration	Material does not resist the higher temperature	Impact increased by the higher flame speed, but (partially) compensated by air excess increase 20% H ₂ NG: no issues detected, but case by case evaluation required

- risks related to H2NG supply -

--- P [kVV] --- lambda [-] --- Vgas [m3/h]

H ₂ property	Risk	Cause	Comments + evaluation for 20% H_2NG
Higher fuel volume flow	Hypoxia/CO poisoning	Combustion products entering living spaces due to inappropriate device functioning	E.g. inappropriate position of thermal safety device (TTB) on B11BS appliances 20% H_2NG : no issues detected

- other properties and risks to be assessed -

delayed ignition

THyGA

D4.3

- chemical impact on materials
- lower combustion products temperature
- wider flammability range
- lower emissivity
- pale blue flame
- lower ionization current
- lower carbon content
- higher pressure drop
- ventilation requirements
- methane number = 0
- ...

Delayed ignition test on premix boiler

	Boiler setting						delayed ignition time [s]					
Tes t No.	Gəs	CO2 [%] O2 [%] Max-Min	CO DAF [ppm] Max- Min	Test gas	CO2 [%] O2 [%] Max-Min	CO DAF [ppm] Max-Min	1	2	3	4	5	6
1	G20	02: 5,4-5,9	CD: 155-8	G20	002: 8,7-8,4 02: 5,4-5,9	CO: 155-8						
2	G20	02: 5,4-5,9	CO: 155-8	G20 +30%H2	CO2: 6,9-6,6 O2: 7,0-8,0	CO: 29-2						
3	G20 +30%H2	02: 3,8-4,4	CO: 192-6	G20 +30%HZ	CO2: 8,6-8,4 02: 4,2:5,1	CO: 192-6						į.
4	G20 430%H2	CO2: 8,7-8,4 O2: 3,8-4,4	CO: 192-6	G20	002: 10,6-10,4 02: 2,3-3,0	CD: 678-27						
		smooth ign	ation			Note:						
		small deto	nation			an externi	al time	r has be	een con	nected	betwee to dela	in the
	noisy detonation without damages					ignition of the gas/air mixture inside the						
		very noisy	detonatio	on withou	t damages	combustion chamber from 1s to Ignition Safety Time						
		boiler dete	erioration	- hazard i	for user	[T5A].						
	1	No ignition	ń.			[

WP3 - Experimental Work

- Objectives of the WP3 (experimental work)
- WP3 Testing protocol and parameters studied
- Working method
- Results for the short-term tests
- Results for the long-term tests
- Conclusions
WP3 - Objectives of the WP3

The main goals of WP3 are

- To define a **detailed test protocol** based on WP2 input in order to
 - define accurately the details of the testing
 - to guarantee the best possible reproducibility of testing
 - and making sure that all elements needed for the analyse are included in the reports.

- To execute short- and long- term testing on as many appliance as possible in order to achieve conclusions on sensitivity to H2 by segments of technologies.
- To check the tightness of present indoor installation and appliances components to H2/NG mix (this aspect of the project will be discussed in the next part of the workshop)

WP3 - Experimental Work Agenda

 Objectives of the WP3 (experimental 	work)												
 WP3 - Testing protocol and parameter 	ers studied												
 Working method 													
 Results for the short-term tests 													
 Results for the long-term tests 	穿 THyGA	Testing Hydrogen admixture for Gas Applications											
 Conclusions 													
	INSTRUCTION FOR THE TEST PROTOCOL												
		for testing in laboratories											
		14/02											
		WP3											
	Note that this docur The document THY The present ppt document i	nent is regularely updated with improvements of the test programme in light of the results of the first tests. WP3_019_DataSheet.xls is the datasheet to be used for testing (last version is at the moment <i>nov 2020a.</i> Is mainly for communication and explanation and may not be further updated once the labs are using the datasheet document (that will be updated regularely).											

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Preparation of the test protocol

- The **test protocol** defines accurately the details of the testing
 - The protocol consist in operative instructions needed for managing all the aspects related to the task from receiving the appliances, the testing, the reporting etc.
- It includes the details of the **test programme** & the **reporting templates for laboratories**
- Stakeholders have been involved in this process from the beginning (consensus on the tests)

THyGA

Preparation of the test protocol... and adaptation to a moving context

Since the project was designed, a lot has happened on H2 front!

CEN TCs starting to work on "H2 ready" certification "H2 ready" concept discussed in regulation ErP (Ecodesign & Labelling) DSO /TSO are clearer about of possible %H2 in the NG grid (up to 20 to 30%)

READJUSTING THyGA testing to give the best value to the industry (focus on 20 to 30% H2)

Specification of the gases used for the testing

Based on real distributed gases (EU High and EU Low)

THyGA

D3.5

Parameters studied during the short-term tests

Objective: to understand how appliances react in the short term (few minutes to few hours) with different H2NG blends. The evaluation will cover **safety, energy efficiency, emissions & operational aspects**

Parameters to measure

- Combustion/emissions
- Efficiency
- Safety

THyGA

D3.5

D3.8

Operational aspects (Normal operation of the appliances or not)

Parameters to vary

- % H2 according
- H2 Rate of change (ROC)
- Natural gas composition
- Pressure
- Adjustment or not.

The philosophy of the test in lab is to simulate a situation that is found on the field: **Gas quality variation with H2 on appliances** that are not modified between the changes.

Picture DGC

THyGA – Final Workshop

Test programme

Ρ

 \mathbf{O}

S

THyGA

Safety

Performances

(Emissions & Efficiency)

D3.5

D3.8

TESTING PROGRAMME (all tests with H2 added at different %)

- SAFETY & PERFORMANCES CH4
- SAFETY & PERFORMANCES EULOW
- SAFETY & PERFORMANCES G23
- Low air temperature (- 10 C)
- Flue gas pipe length
- ROC (PLUGG FLOW)
- Impact of H2 on flame detection
- Flashback
- ADJUSTMENT A, B, H, G
- Delayed ignition test.
- Quick variation Qmin-Qmax Shut-off
- Cooker hob test with 4 burners on
- Influence of wind
- Long term (limited time)
- Fluctuation of the aux. energy
- Fluctuation of pressure
- Cold start
- Hot start
- Other test

CO, NOx, Efficiency

The testing programme was elaborated carefully, taking into acount the existing knowledge and the specificity of H2 as for exemple the flame speed.

Operational aspects

WP3 - Testing protocol and parameters studied Adjustment

- In practice, most of appliances in the category H (High calorific gas widely distributed in the EU) are adjusted by the manufacturers with CH4 before being sold on the market. Some appliances are also re-adjusted **on the field** according to manufacturer instructions either during the commissioning or after a service or a reparation. This is done with the gas distributed locally and not CH4.
- What we call adjustment in THyGA is the operation of field adjustment to reach a certain air excess according the O2 or CO2 value that is given by the boiler manufacturer in technical instructions.
- Usually, appliances are adjusted to an air excess that is a compromise to achieve the best possible efficiency with the lowest possible emissions.

Figure DGC - GASQUAL

THyGA

D3.5

Adjustment: set because of fluctuations of the gas quality in the grid

THyGA

D3.5

D3.8

THyGA

Adjustment: scenario implemented in THyGA

Several scenarios of adjustment were tested in THyGA. **The test simulates a possible realistic situation where**:

THyGA

D3.5

D3.8

1. The **appliance** is adjusted (without taking into account the real gas quality distributed) with O2 or CO2 value according the present instructions of the boiler manufacturer (that are based on natural gas type H without presence of H2).

2. The gas quality changes at any time after the adjustment.

Example for test G:

- 1. Appliances are adjusted with EU low + 20%H2 (with CO2 and or O2)
- 2. And **tested with**:
 - EU high (without H2)
 - EU high + H2 (10%)
 - EU high + H2 (30%)
 - EU high + H2 (60%)

THyGA D3.5 D3.8 WP3 - Testing protocol and parameters studied Rate of Change (ROC)

The "rate of change" test consist in a **sudden change of the gas distributed** to the appliance in order to check how it can possibly react in such situation.

The test consists in:

- Observing possible operational problems with the appliance.
- Measuring emissions.

Gas mixing station Picture DGC

[,] THyGA

t = 15 s

t = 5 min

t = 8 min

Flame with Flash

(picture THyGA

application)

back

THyGA

D3.5

D3.8

Test showing FB under following test conditions, Qmax, Pnom, CH4 = 40% H2 = 60%

Flame with partial flash back on a cooker hob (picture THyGA test DGC)

The "Flash back" or "light back" is associated with the flame speed which is impacted by Hydrogen.

Flash back results in the flame burning below the burner surface either entirely or partially.

THyGA

THyGA

D3.5

D3.8

WP3 - Testing protocol and parameters studied Flame detection

Most of the appliances tested have flame supervision systems based on flame ionisation currents. For most of them, the ionisation signal remains quite high and above the threshold (below which the safety system closes the gas inlet).

The ionisation works surprisingly well with the level of H2 tested (60% in many cases) for flame detection while we expected problems since the hydrogen flame is supposed to generate a lower ionisation current.

- It should be pointed out, however, that if the flame ionisation signal is also used for combustion control purposes, this approach is insufficient and unable to maintain a constant air excess ratio.
- The reason for this is that due to the presence of hydrogen, the position of the flame relative to the sensor shifts significantly and the control logic is confronted with conflicting signals.

20

18

16

---- D4

BA01
 GW01c

GW03b

- GW02e

GA01

- GA03

GA04

- Objectives of the WP3 (experimental work)
- WP3 Testing protocol and parameters studied
- Working method
- Results for the short-term tests
- Results for the long-term tests
- Conclusions

WP3 – Working method Working by SEGMENT GROUPS

Objective: to gather the appliances in groups by technologies enabling conclusions on similar technologies.

THyGA's Segments / Type of appliance

- 100a Boilers fully premix
- 100b Boilers other
- 200 Water heaters
- 300 Cookers domestic
- 400a Catering equipment Premix
- 400b Catering equipment Not premix
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

Example: all data for water heaters are gathered in the same chapter even if we have differences between sub-segments

201		Instantaneous open flued	Partial premixiatmos	EN 26
202	WATER	instantaneous room-sealed	Partial premix/fanned	CH EV.
203	HEATERS	Storage open flued	Partial premixiatinos	CH 60
204	1	Storage room-sealed	Partial premix/fanned	CN OF

The goal of the following chapters is to provide a synthetic view, more specific details available in the reports

Results are compiled in a simple table showing results at a glance.

THyGA Appliance ID card for	D6_SI	EGM_1	08					
Appliance	EN 15502	Cas Fired b	opting boi	lar				
Appliance	EIN 13502	Gas-fired fi	earing poi	ler				
Burner	Premix							
Origin	New applia	ance (2021)						
Segment	108							
Max. power input (net) [kW]	22							
Min. power input (net) [kW]	3							
SAFETY ASSESMENT. H2 % tested	0	10	20	23	30	40	50	60
1.1 SAFETY- with CH4	x	x	x	x	x	x	x	x
1.2 SAFETY- with EULOW								
1.3 SAFETY- with G23								
1.4 Cold start.						x		x
1.5 Hot start.								x
1.6 Low air temperature (- 10 C)								
1.7 Flue gas pipe length					x			
1.8 ROC (PLUGG FLOW)						x		
1.9 Impact of H2 on flame detection.						x		
1.10 Flash back	x	×	x	x	x	x	x	x

X = Point tested by the Lab

x	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

SAFETY ASSESMENT. H2 % tested	0	10	20	23	30	40	50	60
3.1 ADJUSTMENT A	NA							
3.2 ADJUSTMENT B	NA							
3.3 ADJUSTMENT H	NA							
3.4 ADJUSTMENT G	NA							
4.1 Delayed ignition test.					x			
4.2 Soundness								
4.3 Quick variation Qmin-Qmax Shut-off								
4.4 Overheat. Meas. of temp.								
4.5 Cooker hob test with 4 burners on	NA							
4.6 Influence of wind								
4.7 Long tem (limited time)								
4.8 Fluctuation of the aux. energy			х					
4.9 Fluctuation of pressure						х		

WP3 – Working method

From individual "ID Cards"... to a global view for the group

	segment		EN02v01	GW01V04	AP02V03	105w02	D4v03	Dê	GW05V04	GW06V03	GW07V02	GW08V02	GW10V02	GW11V02	GW17	E801V04	EN01v01	GA11V03	EN21	GW13V02	GW23	GW21	1
	Segment		106	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	
	Qmin (kW)		8,3	6,9	2,5	4,3	4,8	2,5	6	4,5	6	1	2,5	2.9	5,1	4,8	2,1	6,1	3,3	25	4,5	4,4	
	Qmax (kW)		41,6	24	22	20,8	20	22	21	15,3	22	22,5	32	20	32	30	12,5	17,8	30,3	3,2	15,Z	20,4	Tested appliance
	Combustion control feature (Y/N)		N	(Y)		¥.	¥	Y	. Y	N	N		Y.	0	N	Y.	N	π.	Ŷ	Ŷ	Ŷ	γ	Testeu appliance
	Appliance category		H2EsI3P IZEs	IIZEU.	II2H3P	II 2H3B/P	II ZH3B/P	11 2H3B/P	II2N3P	H2N	IIZEUL 3P	19213P	HZN3P	2N3P	112H3P	125(5)	IIZESI3P	125(5)	112H3P	B2N3P	12H	0/2N3P	l
Ð	1774-116	CH4	х	х	X	ж	ж	800		x	x	X	- x	0.00	(ax)	-×	ж	×	×	× X	×	3.8	
3	Reference gas	EU LOW		ж			х			1		ĸ				×		×					
Ŧ		G23							х	x	x	*	x	x	x			×		x			
*		0	x	x	(X)	X	(x)	х	(x)	2 X	(x)	к	ж	X	×	х	×		x	x	X	X	
a.		0-10	x	х		×	×	x			A	x	ж		×	ж) (X)			х	х	х	
8		10-20	×			×	×	ж								ж	×	×					
5	WH2 In text car	20-23	×	(X)	(X);	×	×	x	(X)	(x)	(X)	*	0.80	X	×	x	(8)	(8)	(X)	 (x) 	2 8 2	(x)	
ele	2662 in test gas	23-30	x	x		*	×	х			x	×	x		x		*	*		×	X	x	
d: r		30-40	×	×	×	ж	. K	S.M.	(x)	x	×.		.	3 X	×	X ()	- X -	×	x	×	×	×	
ste		40-50	х		×	(18)	0.40	×	X		< X /		0.00	1.00	×:	×				×	× .	×	How we make a
Ĕ		50-60	×		×	×	×	×	×		x	x	x	*	*	x				x	x	- X 1	
CS	1.4 Cold start	CH4+40%H2		×	×	x	x	X	(X)		X	ж	x	X	x	x	× .	×.	×	х			conclusion per
165	1.5 Hot start.	CH4+23% H2+40%H2(min)			*	х		x	×	×.	×.	×		x	*	x	x	x	x	×			narameter
LO T	1.6 Low air temperature (- 10 C)	CH4+H2		ж		-		-															<i>purumeter</i>
FGP	1.7 Flue gas pipe length	CH4+30%H2		x				(X)								×							
ROC	1.8 ROC (Plug flow)	CH4+40%H2		x	x	×	x	x		х		x.	Χ.	x	× .	x :	×	Χ.	×	*			
FD	1.9 Impact H2 flame detection.		×	×		ж	N .	ж	X		×	x		x	×	X ()	х	x	NA				
FB	1.10 Flash back				×	(X)	х	x	×			2. X	-	(X)	K.	× .		×				х.	
AD A	3.1 Adjustment A	EU HighEU Low+H2		NA	NA		×	NA	NA	-		×	NA	NA.		NA		*	NA	NA	1		Simple assesment:
AD B	3.2 Adjustment B	EU lowEU high+H2		NA	NA		x	NA	NA			x	NA.	NA		NA		×	NA	NA			All Green = Green
AD_H	3.3 Adjustment H	EU Low+H2EU high+H2		NA	NA		×	NA	NA			x	NA	NA		NA		x	NA	NA			
AD G	3.4 Adjustment G	EU Low+H2EU high+H2	х	NA	NA	х		NA	NA			. (30)	NA	NA		. (34.)	х		х	NA			Une Red = Red
DI	4.1 Delayed ignition test.	CH4+30%H2																				(
5	4.2 Soundness																	×	_				
άv	4.3 Quick variation Qmin-Qmax	CH4+30%H2				NA	NA					× .		_			x	x					
OH	4.4 Overheat. Meas, of temp.	CH4+30%H2										_											
48	4.5 Cooker hob test with 4	CH4+30%H2	NA		NA	NA	NA	NA	NA		NA		NA		NA	NA	NA	NA	NA	NA			
W	4.6 Influence of wind																	x					
- ut	4.7 Long time (limited time)	depends on manufacturer									1.					x :							
AUX	4.8 Fluctuation of the aux.	1						x															
р	4.9 Fluctuation of pressure	CH4+40%H2			×	×	×	х	(X)			x	ж	*	*		×	*	× X	X			
0	Other /Operational	8	×		×	1		x			-	x										1 3	1

THyGA

D3.5

WP3 – Working method

From individual "ID Cards"... to a global view for the group... to a final result

Final result for a group of appliances (here Segment 100a Fully premix boilers)

					H2 %	Tested				No issues
20-		0	0-10	10-20	20-23	23- 30	30- 40	40-50	50- 60	Safety issues
100a Boilers fully premix	Safety			simple	mitigation t	o be defined	5	8	11	Potential issue
				milligation (5)					The file	Operational issue
	Safety with mitigation	-		Dedicated	adjustment me	thodology	2,	5	8	Not tested extensively
	Operational									Not tested

THyGA D3.5

- Objectives of the WP3 (experimental work)
- WP3 Testing protocol and parameters studied
- Working method
- Results for the short-term tests
- Results for the long-term tests
- Conclusions

PLEASE NOTE THAT there are open discussions and the results presented are not yet final.

The extended report with all details will be publicly available in early April

Discussion on types of segments

THyGA's Segments / Type of appliance

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

Because of the large market share

Because of lack of time to treat extensively all segments

Segment 100a Boilers fully premix

THyGA's Segments / Type of appliance

	100a	Boilers fully premix		Detailed result
-	300	Cookers domestic		
•	100b	Boilers other		
•	200	Water heaters		
•	400	Catering equipment		
•	500	Space Heaters		
•	600	Combined Heat and Power (CHP)		
•	700	Gas Heat Pumps (GHP)		
	800	Radiant heater & commercial air hea	ters	

Discussion on types of segments: how to read the tables?

WP3 – Results for the short-term tests

Segment 100a Boilers fully premix: details of results for safety (1/6)

x	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

	segment		EN02v01	GW01V04	AP02V03	D5v02	D4v03	D6	GW05V04	GW06V03	GW07V02	GW08V02	GW10V02	GW11V02	GW17	E801V04	EN01v01	GA11V03	EN21	GW13V02	GWZ3	GW21
	Segment		106	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
	Qmin (kW)		8,3	6,9	2,5	4,3	4,8	2,5	6	4,5	6	1	2,5	2,9	5,1	4,8	2,1	6,1	3,3	25	4,5	4,4
	Qmax (kW)		41,6	24	22	20,8	20	22	21	15,3	22	22,5	32	20	32	30	12,5	17,8	30,3	3,2	15,2	20,4
	Combustion control feature (Y/N)		N	Y		Ŷ	¥	Y	Ŷ	N	N	Y	Y	0	N	¥	N	n	Y	Y	¥	Y
	Appliance category		II2Esi3P I2Esi	II2ELL	II2H3P	II 2H3B/P	II 2H3B/P	II 2H38/P	112N3P	II2N	II2ELL 3P	II2L3P	II2N3P	2N3P	Н2НЗР	12E(5)	II2Esi3P	12E(5)	II2H3P	II2N3P	12H	II2N3P
Ţ		CH4	x	х	x	x	х	x	x	x	x	x	x	x	x	х	x	x	x	x	x	X
a n	Reference gas	EU LOW		х			x					x				x		x		0		
HZ		G23							×	×	×	×	×	×	×			x		×		
*		0	X	x	X	X	x	×	×	х	×	×	x	x	×	X	x		x	×	x	х
erence gas		0-10	X	x		×	x	x			×	x	x		×	x	x			(X)	. X	X
	%H2 in test gas	10-20	X				×	×				×				X	×	X				
		20-23	x	x	x	×	x	x	х	х	x	x	х	x	x	x	X	×	x	×	x	x
efe	Anz in test gas	23-30	x	x		×	X	×			×	X	×		×		×	×		x	x	x
-:p		30-40	x	x	×	×	×	×	x	x	×		х	x	×	x	×	×	x	x	x	x
este		40-50	x		×	×	×	×	×		x		х	×	×	x		-		×	x	×
÷	0	50-60	x		×	x	x	×	×	-	×	x	x	x	×	x		-		x	x	x
CS	1.4 Cold start	CH4+40%H2		×	*	×	×	×	×	x	×	x	×	x	×	x	×	x	×	x		
HS	1.5 Hot start.	CH4+23% H2+40%H2(min)		_	×	×		x	×	х	×	×	х	x	×	x	×	x	х	x		
La T	1.6 Low air temperature (- 10 C)	CH4+H2		x						х												ļ
FGP	1.7 Flue gas pipe length	CH4+30%H2		х				×								x						
ROC	1.8 ROC (Plug flow)	CH4+40%H2		x	x	×	x	×		х		х	x	x	x	x	×	x	х	×		1 1
FD	1.9 Impact H2 flame detection.		x	x		×	x	x	×		x	×	х	x	x	x	x	x	NA		1 []	
FB	1.10 Flash back				x	X	x	x	×			x		x	x	x		x				x)

WP3 – Results for the short-term tests

Segment 100a Boilers fully premix: details of results for safety (2/6)

x	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

	segment		EN02v01	GW01V04	AP02V03	D5v02	D4v03	D6	GW05V04	GW06V03	GW07V02	GW08V02	GW10V02	GW11V02	GW17	E801V04	EN01v01	GA11V03	EN21	GW13V02	GWZ3	GW21
	Segment		106	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
	Qmin (kW)		8,3	6,9	2,5	4,3	4,8	2,5	6	4,5	6	1	2,5	2,9	5,1	4,8	2,1	6,1	3,3	25	4,5	4,4
	Qmax (kW)		41,6	24	22	20,8	20	22	21	15,3	22	22,5	32	20	32	30	12,5	17,8	30,3	3,2	15,2	20,4
	Combustion control feature (Y/N)			Y		Y	Y	Y	Y	N	N	Y	Y	0	N	Y	N	n	Y	Y	Y	¥
	Appliance category		II2Esi3P 12Esi	II2ELL	II2H3P	II 2H3B/P	II 2H3B/P	II 2H3B/P	H2N3P	II2N	H2ELL 3P	II2L3P	II2N3P	2N3P	H2H3P	12E(5)	II2Esi3P	12E(5)	it2H3P	II2N3P	I2H	II2N3P
AD_A	3.1 Adjustment A	EU HighEU Low+H2		NA	NA		x	NA	NA			х	NA	NA		NA		x	NA	NA		
AD_B	3.2 Adjustment B	EU lowEU high+H2		NA	NA		x	NA	NA			х	NA	NA		NA		x	NA	NA		0 1
AD_H	3.3 Adjustment H	EU Low+H2EU high+H2		NA	NA		x	NA	NA			x	NA.	NA		NA		x	NA	NA		
AD_G	3.4 Adjustment G	EU Low+H2EU high+H2	x	NA	NA:	x	x	NA	NA			X	NA	NA		x	×	x	x	NA		

Main issue = adjustment G

- This is not a systematic issue
 - Not all labs did the requested test (Blank cells)
 - NA is for appliances with combustion controls when manufacturers expressely asked not to make adjustments in the technical documentation
 - Note that test where done for some boilers with combustion controls, when manufacturers allowed it (eg in case of the replacement of a component) (see example below).

CASE	EULOW + 10, 20, 30% H2	EU low +0 to 60% H2		EU high + 20% H2	EU high + 0 to 60% H2
G	Adjusted		_		➡ Used

Segment 100a Boilers fully premix: details of results for safety (3/6)

Issue with adjustment

THyGA

D3.8

 Most critical situation = appliance set with a low Wobbe Index gas, including H2, and used suddenly with a high Wobbe Index gas (bringing combustion close to stoechiometry)

• Potential consequence on the market \rightarrow some leads in WP5 activities

WP3 – Results for the short-term tests

Segment 100a Boilers fully premix: details of results for safety (4/6)

х	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

	segment Segment Qmin (kW)			GW01V04	AP02V03	D5v02	D4v03	D6	GW05V04	GW06V03	GW07V02	GW08V02	GW10V02	GW11V02	GW17	E801V04	EN01v01	GA11V03	EN21	GW13V02	GWZ3	GW21
				108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
				6,9	2,5	4,3	4,8	2,5	6	4,5	6	1	2,5	2,9	5,1	4,8	2,1	6,1	3,3	25	4,5	4,4
	Qmax (kW)			24	22	20,8	20	22	21	15,3	22	22,5	32	20	32	30	12,5	17,8	30,3	3,2	15,2	20,4
	Combustion control feature (Y/N)			Y		Y	¥	Y	Y	N	N	Y	Y	0	N	¥	N	n	Y	Y	Y	Y
	Appliance category			II2ELL	II2H3P	II 2H3B/P	II 2H3B/P	II 2H3B/P	II2N3P	II2N	II2ELL 3P	II2L3P	82N3P	2N3P	II2H3P	12E(5)	II2Esi3P	12E(5)	II2H3P	II2N3P	12H	II2N3P
DI	4.1 Delayed ignition test.	CH4+30%H2																				
s	4.2 Soundness												-					x		<u> </u>		0
QV	4.3 Quick variation Qmin-Qmax	CH4+30%H2				NA	NA					×					x	x				ii
он	4.4 Overheat. Meas. of temp.	CH4+30%H2																		Ĵ.		
48	4.5 Cooker hob test with 4	CH4+30%H2	NA		NA	NA	NA	NA	NA		NA		NA		NA	NA	NA	NA	NA	NA		
W	4.6 Influence of wind																	x				
LT	4.7 Long time (limited time)	depends on manufacturer									×					x						
AUX	4.8 Fluctuation of the aux.				_			×														
р	4.9 Fluctuation of pressure	CH4+40%H2		-	×	x	x	×	×	х	×	х	×.	x	x		x	x	х	x		1 8
0	Other /Operational		×	-	x			×				×									2 - V	5

Segment 100a Boilers fully premix: details of results for safety (5/6)

CO emissions Qmax (data is split in 2 graphs for visibility)

THyGA

WP3 – Results for the short-term tests

Segment 100a Boilers fully premix: details of results for safety (6/6)

CO emissions Qmin

Segment 100a Boilers fully premix: other results

NOx Qmax

THyGA

D3.8

01-06-2023

WP3 – Results for the short-term tests

Segment 100a Boilers fully premix: other results

NOx Qmin

WP3 – Results for the short-term tests

Segment 100a Boilers fully premix: other results

Eff. Qmax

Segment 100a Boilers fully premix: other results

UHC emissions (mg/kWh for the operation conditions of the test)

H2 emissions (mg/kWh for the operation conditions of the test)

THyGA D3.8

Segment 100a Boilers fully premix: conclusions (1/2)

- 1. Possible issue already at 20% H2 if adjustment is still allowed when H2 in the grid and present procedure is not changed (= same CO2% or O2% as for NG).
- 2. Adjusting with O2 instead of CO2 may solve a great part of the issue
- 3. Not allowing adjustments in presence of H2 in the grid will resolve the problem and the tolerance will be increased to 40% H2
- 4. There can be operational issues starting between 30 and 40% H2 (cold or hot start, noise, etc.)

Flash back was only observed for very high H2 %

THyGA

Segment 100a Boilers fully premix: conclusions (1/2)

Other safety aspects which are not an issue

- Flue pipe length (tested with 4m and 8m long pipe) and external air temperature (down to 0C)
- Quick variation between Qmin and Qmax, does not seem to be a problem.
- ROC (PLUG FLOW test is performed by changing brutally gas composition coming to the tested appliance) (*but one result is in discussion*)
- Gas pressure variations, does not seem to be a problem, note that appliances are probably all equipped with pressure regulators.
- Fluctuation of the auxiliary energy was tested on 8 appliance, without impact on safety.
- The **influence of wind** on exhaust ducts was tested on 6 appliances (no impact).

THyGA

Segment 300a cookers domestic

THyGA's Segments / Type of appliance

•	100a	Boilers fully premix
•	300	Cookers domestic Detailed result
	100b	Boilers other
•	200	Water heaters
•	400	Catering equipment
-	500	Space Heaters
•	600	Combined Heat and Power (CHP)
-	700	Gas Heat Pumps (GHP)
	800	Radiant heater & commercial air heaters

WP3 – Results for the short-term tests

Segment 300a cookers domestic: appliances and % of H2 tested

х	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
×	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

1	Appliance ID		Di	Dás	0/7v02	Dillov02	FRIOVOS	EN05v03	ENDOVOE	ENIOVER	ENOBVOI	EN11V02	EN124V02	EN126/402	ENIS	ENSI	EN22	Di	\$807V03	E808v04	ERDSVOI	FREEMEN	8501	8502	EN07v04	EN09v04	EB15V03	GRIEVER	ENSI	09402	D30v02	EN15
1	Segment		301	301	315	301	301	.901	301	991	301	301	301	301	301	301	301	301	301 8 302	303	309	303	303	303	303	303	304	304	309	211	313	881
	Qmin (kW)		0,76	0,48	0,67567568	0,81881532	0,6	0.33	0,75	8,33	1,2	1,2	0,5	0,5	not said	riot said	net said	E.	0,41	6,3	0,8	0,33	1,64	1.64	4	1,4	1,2	0,5	not said	0,81061061	not relevant	not said
1	Qmax (kW)		3	1	2,7027027	0,5005005	2,8	1	2,55	1	3,7	2,9	1	4	\$	1.0		2,3	1,75	. 5	8,1	1,1	10,75	\$1.8	1,4	.4	2,9	1	2,5	2,43345243	1,71171171	2,75
- 1	Combustion control feature (Y/N)			36	N	N		N	N	Ν.	N		N	TV .	14	N	N	Pi -	N.	- N	N	N	N	19	36	- N	N	N.	N	N	N	N
		CH4		×	×							× .		10	*		×		×		*	*		(X)	×		х.	×		*	*	×
3	Reference gas	EULOW	Χ.	×.	к.																						(1 8)	м.				
2		G23		*														E.											_			
ž [0	×.		- K	- X (к	(X)	¥.	(K)	00	к.		×.	K.	х	0.M		30	х		N.	(X	083	. 8	18	(B)	x	(X	. ж	x	18
Se .		0-10								2																						
88		10-20																														
8	A113 1- A-14	20-25	2			R (ж		- R)				*						ж	100		×	18			1.1						
8	35H2 in test gas	23-30																ж														
Tested		30-40	13			- R.	ж		- R.													ж			и.							
		40-50	× (×	1982								
		50-60	1.1		1																		1									1

Some specificities for cooking appliances

- Several burners on a same hob (cookers, oven, grill...)
- Tests must be done individually, but also with all fires ignited which multiplies the number of tests

WP3 – Results for the short-term tests

Segment 300a cookers domestic: details of results for safety (1/2)

																		X	Tes	st realized	d and no	issues										
																			Tes	t has no	been da	one with	this %H2	2, but at	lower an	d higher	7.H2, w	e conside	er "no iss	ue"		
						-												X	Tes	st realized	d and iss	ue										
																			Tes	t has no	been do	one with	this %H2	2. but at	lower an	d hiaher	2H2.w/	e conside	er "issue			
																			10.						. k l l l	<u> </u>						
																		X	Po	ential iss	ue (noise	e, atypic	behavio	or) but no	ot linked i	o safety.						
																			Tes	st has no	: been do	one with	this %H2	2, but at	lower an	d higher '	%H2, w∢	e conside	er "poter	ntial issue	•"	
																		NA	Tes	t non ap	plicable											
																			No	hostod												
							101010-0000	1000-00000		100000000	La servera e su			Income in a					140	testeu	100000000			22078		112202/2010/2017					1020100	
	Appliance ID		10	Dan	D/7V02	D8v02	1810/01	ENOSVOI	ENDEVOL	EN10v03	ENGINGE	TN11V03	11/12//02	EN136//03	EN13	17434	EN22	03	1807/05	1203/64	E000v00	EBI1/03	8501	\$5.02	EN07v64	EN09v04	1815V01	EN1EV03	EN16	D9v62	0150v62	EN15
	Segment		301	301	311	301	201	301	301	201	301	303	2011	301	301	301	301	301	301 K 302	202	303	303	303	303	303	303	304	304	209	111	311	211
	Qmin (kW)		0,76	0,48	0,07507588	0,31531532	0,0	4,33	0,75	0,33	1,2	1,2	6,5	0,5	edt satd	ties ton	not said		0.41	0,3	0,5	0,33	1,04	1.04	4	1,4	1,2	63	out said	0,83083083	not relevant	HOR SAID
	Combustion control feature (V/N)				1,02,027	0,9505005	2,0		4,30	-	8,5	4,9			N.	LD N		4,2 N	1.15	3	- 0,1 N	3,5	84	14.0	4/1	-	4,8	-	4,5 N	2,43243243	2,721/21/2	4,18
10	1.4. (oil start	Distant/Mar2																		-						-	-	-		100	14	74
HS	1.5 Hot start	CH4423% H2440%H02/min1	-	-	×-	x			-	-	-	× /	-	- 11		x					T							×		×	x	×
LoT	1.6 Low air temperature (- 10 C)	014+112			NA	NA						NA																		MA		
FGP	1.7 Flue gas pipe length	DH4+30%H2	-		TAA .	NA.	NA			-	-	MA	-	-		-			NO.	NA	NA	NA								- 10		_
ROC	1.8 ROC (Plug flow)	CH4H40%H2			*	×			R.C.		194	K.				x	N N		ж			8.			×			×	×	1.8		
FD	1.9 Impact H2 flame detection.		x	x	×	x				1				-		1			-			_				-		1		×		
FB	1.10 Flash back		X)		×	х.		ж.	×.											14			1							х		
DI	4.1 Delayed ignition test.	DH4130%H2			14.4	NA						-				· · · · · · · ·			- 1 A			·			-	·*		· · · · · · · ·		NA		
5	4.2 Soundness																							ж								
QV	4.3 Quick variation Omin-Omax	CH4+30%H2			×		×	x	*			×		- 1	R.	*	*		×	*		×		x	×		×	×	*			*
ÓH	4.4 Overheat. Meas. of temp.	(344+30%H)								- K																						
48	4.5 Cooker hob test with 4	CH6+30%HZ			NUS				87	×	N/S	- 140	NA	- 144	- 1								745	NA.		- R			1	- 46		
W	4.6 Influence of wind																															
LT	4.7 Long time (limited time)	depends on manufacturer					×	×		× .				- 1								×										
AUX	4.8 Fluctuation of the aux.																											. М.				
P	4.9 Fluctuation of pressure	CH8+40/5H2			×	8	ж	х.	*	×		×		- 8			*		я	8	x	×			×	x	×	×		*		×
0	Other /Operational																															

The main issues observed (for H2 > 30%) are the following:

- Flash back (7 out of 25) (for H2 > 30/40%)
- Cold start with 40%H2(1)
- Hot start (3)

- Quick variation of heat input (4)
- Issue when 4 burners are on (1)
- Issue with pressure change (2)

Segment 300a cookers domestic: details of results for safety (2/2)

Flashback:

THyGA

- Flashback was observed during efficiency test with 40 & 60% H2 after long running time of the cooker (50 minutes or so). In some cases (with 60% H2) it has resulted in damages making the rest of the test impossible
- Present CEN procedures for flash back shall be adapted to H2

Segment 300a cookers domestic: flame aspects (1/2)

Yellow flame during test of several hours

• Flame instability and change of aspect observed with 40% H2 (EB15V03)

THyGA

Segment 300a cookers domestic: flame aspects and other observations (2/2)

Water condensates that create partial extinction

- With hydrogen and cold water in the pan, condensation appears on the bottom of the pan.
- When the droplets hits the burner, it causes a partial extinction of the flame. The flame turns orange for a few seconds and becomes blue again when water has fully evaporated.

EN12 burner under normal operation and with water falling into the flame

THyGA

Segment 300a cookers domestic: other results (1/3)

10

Ű

0

10

20

30

%H2vol

40

50

Efficiency

THyGA

D3.8

-B5H

60

CO

Segment 300a cookers domestic: other results (2/3)

UHC emissions (mg/kWh for the operation conditions of the test)

THyGA

Segment 300a cookers domestic : other results (3/3)

Temperature at burner surface- Cooking hobs EN08

THyGA

Segment 100b Boilers other

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

WP3 – Results for the short-term tests

100b Boilers other: Discussion of the segment group results

	Appliance ID		GA01	EN03V01	GA16v01	EB02v04	GW02V04	GW03V04	GW04V04	GW12V03	GW16V01	BA01	GW18
	Segment		101	101	102	102	102	103	105	107	107	107	109
	Qmin (kW)		11	0	na	12	8,9	0	12	15	9,1	10,6	29
	Qmax (kW)		25,8	34,87	27,5	26,5	22,2	17	22,2	25	22,6	24,8	232
	Combustion control feature (Y/N)		N	N	N	Y	N	N.	N	N	N	Y	¥.
		CH4	(X.)	x	x	x	x	×.	×	x	(X)	×	x
8	Reference gas	EU LOW	x		x							x	
ž		G23	(*)	1			x	x	×		×		
2		0	-	х	ж	х	x	x	×	×	x	x	x
ŝ		0-10		х		×	x			×		×	
80		10-20		×		×	×		1			x	
E I		20-23		х		x	x		×	×	x	х	x
E C	%H2 in test gas	23-30		x		×	х		×	×		х	
Ē		30-40		х	x	x	x	x	х	x	x	х	x
a l		40-50	ж			×	×	x	×	×	x	x	
≞		50-60		1. 1.		×	4	X	×	x	×	×	×
CS	1.4 Cold start	CH4+40%H2		×	×	×	×	×	×		×	×	×
HS	1.5 Hot start.	CH4+23% H2+40%H2(min)		х	- × -	×	x	x	x		x	×	x
LO T	1.6 Low air temperature (- 10 C)	CH4 + H2					ж						
FGP	1.7 Flue gas pipe length	CH4+30%H2		1								x	
ROC	1.8 ROC (Plug flow)	CH4+40%H2	(x .)	х	x	x	x		×		x	x	×
FD	1.9 Impact H2 flame detection.		28.5	x	x	х	x	- X.		-		х	x
FB	1.10 Flash back		x	x	x	x		x	3		X	×	
DI	4.1 Delayed ignition test.	CH4+30%H2	-	6 3			8					x	
5	4.2 Soundness												
QV	4.3 Quick variation Qmin-Qmax	CH4+30%H2	x		x								
OH	4.4 Overheat. Meas. of temp.	CH4+30%H2			x	1							
48	4.5 Cooker hob test with 4	CH4+30%H2	NA		NA			NA .		NA	NA	NA	NA
W	4.6 Influence of wind			11 II			1						
LT.	4.7 Long time (limited time)	depends on manufacturer		х	x	x							
iux	4.8 Fluctuation of the aux.				x							×	
p	4.9 Fluctuation of pressure	CH4+40%H2	х	p. 5	x			x	x		×	x	x
0	Other /Operational				×			*					

х	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

Open discussion – Not final results

- Cold start (1) at 60 % H2
- Hot start (1) at 40% H2
- Flash back (3) at 40%

No issue below 40%

Efficiency

THyGA D3.8

NOx

CO

Segment 200 water heaters

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

WP3 – Results for the short-term tests

200 Water heaters: Discussion of the segment group results

	Appliance ID		GA09V03	GA10v01	GW14V01	GW19	GA05
	Segment		201	201	201	201	201
	Qmin (kW)		5,3	5,3	5,3	5,3	5,3
	Qmax (kW)		10,5	10,5	10,5	10,5	10,5
	Combustion control feature (Y/N)		N	N	N	N	N
τ	2	CH4	×	×	×	×	×
ŝ	Reference gas	EU LOW					×
Ŧ		G23			х	X	
100		0	х	X.	ж	х	
32		0-10			×	×	(*)
8		10-20					
Ē.	0/113 to 4004 per	20-23	x	x	X	х	
ŝ	76H2 In test gas	23-30			x	х	
÷		30-40	×:	x	x	×	х
sto		40-50			X	_	
Te		50-60			ж		
CS	1.4 Cold start	CH4+40%H2	×	x	×	х	×
HS	1.5 Hot start.	CH4+23% H2+40%H2(min)	х	ж	ж	x	
Lot	1.6 Low air temperature (- 10 C)	CH4 + H2					
FGP	1.7 Flue gas pipe length	CH4+30%H2					
ROC	1.8 ROC (Plug flow)	CH4+40%H2	x	×	ж	x	х
FD	1.9 Impact H2 flame detection.		x	х	×		×
FB	1.10 Flash back		×			Ĩ	x
AD_A	3.1 Adjustment A	EU HighEU Low+H2	NA.	NA	NA	NA	NA
AD B	3.2 Adjustment 8	EU lowEU high+H2	NA	NA	NA	NA	NA
AD_H	3.3 Adjustment H	EU Low #H2EU high #H2	NA	NA	NA	NA	NA
AD_G	3.4 Adjustment G	EU Low+H2EU high+H2	NA	NA	NA	NA	NA
D	4.1 Delayed ignition test.	CH4+30%H2					
s	4.2 Soundness						
QV	4.3 Quick variation Qmin-Qmax	CH4+30%H2		×			×
OH	4.4 Overheat. Meas. of temp.	CH4+30%HZ					
49	4.5 Cooker hob test with 4	CH4+30%H2	NA	NA		NA .	NA
w	4.6 Influence of wind						×
LT	4.7 Long time (limited time)	depends on manufacturer					
AUX	4.8 Fluctuation of the aux.		NA				
p	4.9 Fluctuation of pressure	CH4+40%H2	×	×	×	×	×
0	Other /Operational		×				

01-06-2023

x	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
×	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

Open discussion – Not final results

Appliance not Conform with
CH4: will not be used for the conclusion

No premix appliances on this list.

84

200 Water heaters: Discussion of the segment group results

Efficiency

THyGA D3.8

NOx

CO

충 THyGA

Segment 400 catering equipment

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

WP3 – Results for the short-term tests

400a Catering equipment- PREMIX: Discussion of the segment group results

	Appliance ID		EB22V01	EB23V01	EB24V01	EB19V02	EB20V02	EB03v03	EB17v01	GA04	EB18v01	EB21V01
	Segment		402	402	454	404	404	404	405	406	409	410
	Qmin (kW)		2	1	8	5	5	NA	1	16		12
	Qmax (kW)		7	3,5	6	13	13	19	20	31	10,6	20
	Combustion control feature (Y/N)		N	N.	N	¥	Ý	N	N		N	N
τ		CH4	x	x	к	x	x		x		0.8	x
35	Reference gas	EU LOW	×	×	x	×	×		x	x	x	×
H2		G23										
*		0	×	×	x	×	×	×	x		x	×
in the		0-10				×	×	×		_		
8		10-20				×	x	x				
i a	0/113 to 40.00	20-23	x	х	x.		×	×	x	*	x	x
efei	76H2 In test gas	23-30	×	×	×	x	x	×			×	×
5		30-40	x	x	X	×	x	×	x		×	x
ste		40-50								_		
Te		50-60										
CS	1.4 Cold start	CH4+40%H2	х	x	X	*	×	×	X	x	x	×
HS	1.5 Hot start.	CH4+23% H2+40%H2(min)	×	х	x.	ж	×	x	x	x	X.	×
Lo T	1.6 Low air temperature (- 10 C)	CH4+H2										
FGP	1.7 Flue gas pipe length	CH4+30%H2										
ROC	1.8 ROC (Plug flow)	CH4+40%H2	×	x	x	ж	×		x	х	×	×
FD	1.9 Impact H2 flame detection.					×	×		x	x		
FB	1.10 Flash back									х		
AD_A	3.1 Adjustment A	EU HighEU Low+H2					ć	NA	ć	ж		
AD_B	3.2 Adjustment B	EU lowEU high+H2						NA		× _		
AD_H	3.3 Adjustment H	EU Low+H2EU high+H2						NA				
AD_G	3.4 Adjustment G	EU Low+H2EU high+H2			2	x	x	NA		ж		
DI	4.1 Delayed ignition test.	CH4+30%H2				_						
5	4.2 Soundness						1					
QV	4.3 Quick variation Qmin-Qmax	CH4+30%H2	х	x	x				x	x		×
OH	4.4 Overheat. Meas. of temp.	CH4+30%H2										
48	4.5 Cooker hob test with 4	CH4430%H2	×	NA	NA	ж			NA	NA	NA	
W	4.6 Influence of wind		1						1			
LT	4.7 Long time (limited time)	depends on manufacturer	ж	×	х	×	×	×	ж		x	х
AUX	4.8 Fluctuation of the aux.					ж	x		×			×
P	4.9 Fluctuation of pressure	CH4+40%HZ	x	*	×	×	×		x	x	x	×
0	Other /Operational											

x	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

Open discussion – Not final results

• Adjustment (3)

충 THyGA

400a Catering equipment PREMIX: Discussion of the segment group results

Efficiency

THyGA D3.8

CO

WP3 – Results for the short-term tests

400b Catering equipment-NOT PREMIX: Discussion of the segment group results

	Appliance ID		EB14v01	EB04v04	EB05v04	GA17v03	GA03	EB06v03
	Segment		401	402	402	406	407	408
	Qmin (kW)		4,15	1,55	2,5	ne	Not specified	NA
	Qmax (kW)		12	6	10	15	5,9	21
τ		CH4	х	х	x	×	x	х
as n	Reference gas	EU LOW	х			X	x	x
Ŧ		G23	1					
*		0	x	×	x	x	x	x
3		0-10	×	ж	х			x
8		10-20		×	х			×.
ene		20-23	×	*	x	×	x	×
efer	%H2 in test gas	23-30	×	x	x	×		x
÷.		30-40	×	x	x	- X	(m) (m)	×
ste		40-50	6					
Ë,		50-60	3					
CS	1.4 Cold start	CH4+4055H2	×	×	х	×	x	x
HS	1.5 Hot start.	CH4+23% H2+40%H2[min]	х	х.	x	ж	1000	28
Lo T	1.6 Low air temperature (- 10 C)	CH4 + H2	-					
FGP	1.7 Flue gas pipe length	CH4+30%HZ						
ROC	1.8 ROC (Plug flow)	CH4+4055H2	X	x	х	х	×	x
FD	1.9 Impact H2 flame detection.		2		1	×	х.	
FB	1.10 Flash back		5	×	×	х.	x	
AD_A	3.1 Adjustment A	EU HighEU Low+H2	NA	NA	NA	NA	NA	NA
AD B	3.2 Adjustment B	EU lowEU high+H2	NA.	NA	NA	NA	NA.	NA:
AD_H	3.3 Adjustment H	EU Low+H2EU high+H2	NA	NA	NA	NA	NA	NA
AD_G	3.4 Adjustment G	EU Low+H2EU high+H2	NA	NA	NA	NA.	NA.	NA
D	4.1 Delayed ignition test.	CH4+3055H2				1.11.		
5	4.2 Soundness		1			×		
QV	4.3 Quick variation Qmin-Qmax	CH4+30%H2	×	×	×	×	x	
OH	4.4 Overheat. Meas. of temp.	CH4+30%H2						
48	4.5 Cooker hob test with 4	CH4+30%H2		х.	x	NA	NA.	NA.
W	4.6 Influence of wind					×	x	
LT.	4.7 Long time (limited time)	depends on manufacturer	×	×	×			×
AUX	4.8 Fluctuation of the aux.		×					×
P	4.9 Fluctuation of pressure	CH4+40%H2	x		8	×	а. — ж	x
0	Other /Operational					x		×

x	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
×	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

Open discussion – Not final results

Flashback at 30%

400b Catering equipment-NOT PREMIX : Discussion of the segment group results

NOx

Efficiency

THyGA D3.8

🕭 THyGA

THyGA - Final Workshop

Segment 500 space heaters

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

WP3 – Results for the short-term tests

500 Space Heaters: Discussion of the segment group results

	Appliance ID		GA02	GA07v03	GA08v02	GAGEVOS
	Segment		503	503	504	507
	Qmin (kW)		3,1	Not specified	3,3	NA.
	Qmax (kW)		5,8	10,2	10	5,36
	Combustion control feature (Y/N)		N	NA	N	N
P		CH4	х	×	ж	х
32	Reference gas	EU LOW		X		
H2		G23				
*		0	х	X	ж	×
as B		0-10	(X)	x		x
e j		10-20	×			
ren	NU2 in test are	20-23	х	x	ж	
efe	anz in test gas	23-30	×	×		
-p		30-40	×	X	X.	ж
ste		40-50	×		×	×
Ŧ		50-60	x		ж	×
CS	1.4 Cold start	CH4+40%H2		×	.Х.	×
HS	1.5 Hot start.	CH4+23% H2+40%H2(min)			ж	ж
Lo T	1.6 Low air temperature (- 10 C)	CH4 + H2		x	_	
FGP	1.7 Flue gas pipe length	CH4+30%H2		×		
ROC	1.8 ROC (Plug flow)	CH4+40%H2		x	x	
FD	1.9 Impact H2 flame detection.		×	X	1.1	*
FB	1.10 Flash back				X.	x
AD_A	3.1 Adjustment A	EU HighEU Low+HZ		NA	NA	
AD_B	3.2 Adjustment B	EU lowEU high+H2		NA	NA	
AD_H	3.3 Adjustment H	EU Low+H2EU high+H2		NA	NA	
AD_G	3.4 Adjustment G	EU Low+H2EU high+H2	×	NA	NA	×
DI	4.1 Delayed ignition test.	CH4+30%H2				
S	4.2 Soundness					
QV	4.3 Quick variation Qmin-Qmax	CH4+30%H2				NA.
OH	4.4 Overheat. Meas. of temp.	CH4+30%H2				
48	4.5 Cooker hob test with 4	CH4+30%H2	NA		NA	NA
w	4.6 Influence of wind					12
LT	4.7 Long time (limited time)	depends on manufacturer				
AUX	4.8 Fluctuation of the aux.					
P	4.9 Fluctuation of pressure	CH4+40%H2	-		ж	x
0	Other /Operational		x		x	1

х	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

Open discussion – Not final results

Flashback (from 40%)

500 Space Heaters: Discussion of the segment group results

Efficiency

THyGA D3.8

NOx

CO

Segment 600 Combined Heat and Power (CHP)

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

WP3 – Results for the short-term tests

600 Combined Heat and Power (CHP): Discussion of the segment group results

			ICE	ICE	MT	PEMPC	SOFC
	Appliance ID		011	GW09V03	EN20V01	GA12V08	GA13V01
	Segment		602	682	605	004	605
	Qmin (kW)		30.5 (30 % Power Modulation)	9.7	9,4	NA	1.1
	Qmax (kW)		49.4 (300 % Rower Modulation	19.5	20	2	3,2
	Combustion control feature (Y/N)		Y	N	. ¥	NA	N
τ		CH4	*	×	*	x -	×
ŝ	Reference gas	EU LOW			1.00	x	
H2		G23		×		х	
*	· · · · · · · · · · · · · · · · · · ·	0	×	×		×	*
1		0-10		×	ж	х	х
8		10-20				x	
Ē	101117 is seen and	20-23		х	X	x	. X
e a	SH2 In cost gas	23-30		×		X.	
10		30-40	(*	ж			
10		40-50	*	-			
ř		50- 60					
CS	1.4 Cold start	CH0H059H2	х –	ж	×	ж	
H5	1.5 Hot start.	CH4+23% H2+40%H2(min)	×	*	×.		
LOT	1.6 Low air temperature (- 10 C)	CH4+H2					
FGP	1.7 Flue gas pipe length	CH4+30%H2	1		1		
ROC	1.8 ROC (Plug flow)	CH4+40%H2	x		ж	x	×
FD	1.9 Impact H2 flame detection.		*		1	×	×
FB	1.10 Flash back		х	(x	x
AD_A	3.1 Adjustment A	EU HighEU Low+H2	*	NA	NA.	NA	NA
AD_B	3.2 Adjustment B	EU IowEU high+H2		NA	N/A	NA.	NA
AD_H	3.3 Adjustment H	EU Low+H2EU Nigh+H2		NA	NA.	NA	NA
AD_G	3.4 Adjustment G	EU Low HIZED high HIZ	1.8	NA	NA	NA.	NA.
DI	4.1 Delayed ignition test.	CH4+30%H2					
5	4.2 Soundness						
QV	4.3 Quick variation Qmin-Qmax	CH6+30%HZ				х	ĸ
OH	4.4 Overheat. Meas. of temp.	CH4+30%H2					
4B	4.5 Cooker hob test with 4	CH4+30%H2	NA		NA.	NA	NA
W	4.6 Influence of wind						
17	4.7 Long time (limited time)	depends on manufacturer					
AUX	4.8 Fluctuation of the aux.				1		
p	4.9 Fluctuation of pressure	CH4+40%H2				×	x
0	Other /Operational		1		1		-

x	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

Open discussion – Not final results

- High CO for > 30% H2 (SOFC)
- Results in discussion for PEMFC

600 Combined Heat and Power (CHP): Discussion of the segment group results

NOx

충 THyGA

CO

Efficiency

THyGA D3.8

Segment 700 Gas Heat Pumps (GHP)

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

WP3 – Results for the short-term tests

700 Gas Heat Pumps (GHP): Discussion of the segment group results

	Appliance ID		GA14V0		
	Segment		203		
	Omin (kW) Omax (kW) Combustion control feature (Y/N)				
τ	CH4				
8	Reference gas	EU LOW	1		
유		G23			
8.+		0	х		
ŝ		0-10			
8		10-20	×		
E.		20-23	x		
efer	%H2 in test gas	23-80	×		
÷		30-40	x		
46		40-50			
Ĕ.		50-60			
CS	1.4 Cold start	CH4+40%H2	x		
HS	1.5 Hot start.	CH4+23% H2+40%H2(min)	x		
LoT	1.6 Low air temperature (- 10 C)	CH4 + H2			
FGP	1.7 Flue gas pipe length	CH4+30%HZ			
ROC	1.8 ROC (Plug flow)	CH4+4056H2	×		
FD	1.9 Impact H2 flame detection.	5	ж		
FB	1.10 Flash back		x		
AD A	3.1 Adjustment A	EU HighEU Low HI2	NA		
AD_B	3.2 Adjustment B	EU lowEU high+H2	NA		
AD_H	3.3 Adjustment H	EU Low+H2EU high+H2	NA		
AD_G	3.4 Adjustment G	EU Low #H2EU high#H2	NA		
Di	4.1 Delayed ignition test.	CH4+30%H2	14		
5	4.2 Soundness				
QV	4.3 Quick variation Qmin-Qmax	CH4+3055H2	х		
OH	4.4 Overheat. Meas. of temp.	CH4+30%H2	1		
48	4.5 Cooker hob test with 4	CH4+30%H2	NA		
w	4.6 Influence of wind				
LT	4.7 Long time (limited time)	depends on manufacturer	×		
AUX	4.8 Fluctuation of the aux.		ж		
P	4.9 Fluctuation of pressure	CH4+40%H2	×		
.0	Other /Operational		10		

01-06-2023

Efficiency

x	Test realized and no issues			
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"			
×	Test realized and issue			
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"			
х	Potential issue (noise, atypic behavior) but not linked to safety			
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"			
NA	Test non applicable			
	Not tested			

Open discussion – Not final results

CO

Segment 800 Radiant heater & commercial air heaters

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

WP3 – Results for the short-term tests

800 Radiant heater & commercial air heaters: Discussion of the segment group results

	Appliance type Appliance ID			IR radiant heater	rR radiant heater	iR radiant heater	Airheater	Air heater	Airheater <70kW	Domestic dryer
				EB25V02	EB26V02	E812V03	GW24V02	GW25V02	GW26V02	GA15v03
	Segment		802	802	802	803	805	806	807	809
	Qmin (kW)		7	30		11,9	22	0	15	758
	Qmax (kW)		10	60	54	15,4	36	98	50	4
	Combustion control feature (Y/N)		N	N	Y.	N	N	N	14	194
pasn	Reference gas	CH4	х	х	x	×	х	х	×.	x
		EU LOW	x			x				×.
Ŷ		G23								
*		0	x	x	x	×	x	йC	8	× .
se de	1 1	0-10					x	x	x	x
22		10-20								x
en en		20-28	x				х	x	x	х.
sted: refer	%H2 in test gas	23-50	X			x	x	N.	×.	×
		36-40	x	×	x	×	×	×	×	×
		40-50					x	x	×	
μ <u>α</u>		50-60					x	×	×	
CS	1.4 Cold start	CH4+40%H2	×	×	x					x
HS	1.5 Hot start.	CH4+23% H2+40%H2(min)	х	x	×	x				
Lo T	1.6 Low air temperature (- 10 C)	CH4 + H2		×						
FGP	1.7 Flue gas pipe length	CH4+30%H2								
ROC	1.8 ROC (Plug flow)	CH4+40%H2	×	x	х.	X .				×
FD	1.9 Impact H2 flame detection.		x	х.	x					×
FB	1.10 Flash back				X					x
AD A	3.1 Adjustment A	EU HighEu Low+H2	NA	NA		NA	NA	NA	NA	NA
AD_B	3.2 Adjustment B	EU lowEU high+H2	NA	NA		NA	NA	NA	NA	NA
AD_H	3.3 Adjustment H	EU Cow+H2EU high+H2	NA	NA		NA	NA	NA.	NA	NA
AD_G	3.4 Adjustment G	EU Low+H2EU high+H2	NA	NA		NA	NA	NA	NA	NA
DI	4.1 Delayed ignition test.	CH4+30%H2			NA					
S	4.2 Soundness									
QV	4.3 Quick variation Qmin-Qmax	CH4+30%H2	x	NA	NA	x				×
OH	4.4 Overheat. Meas. of temp.	CH4+30%H2		x	× .					
48	4.5 Cooker hob test with 4	CH4+30%H2	NA	NA	NA.	NA	NA.	NA.	NA.	NA
W	4.6 Influence of wind				NA					
LT	4.7 Long time (limited time)	depends on manufacturer	x	x	x	- x				
AUX	4.8 Fluctuation of the aux.									
P	4.9 Fluctuation of pressure	CH4+40%H2	х		х					×
0	Other /Operational	·								

х	Test realized and no issues
	Test has not been done with this %H2, but at lower and higher %H2, we consider "no issue"
×	Test realized and issue
	Test has not been done with this %H2, but at lower and higher %H2, we consider "issue"
х	Potential issue (noise, atypic behavior) but not linked to safety
	Test has not been done with this %H2, but at lower and higher %H2, we consider "potential issue"
NA	Test non applicable
	Not tested

Open discussion – Not final results

800 Radiant heater & commercial air heater: Discussion of the segment group results

NOx

Efficiency

THyGA D3.8

CO

400

350

300

(250 (udd))

50150

emissi

8 50

0

400

350

300

(250 udd)200

suoissima 100

8 50

0

0

0

10

10

20

30

%H2vol

40

50

60

20

30

THyGA Segment 800 - Other - CO emissions at Qmin

%H2vol

THyGA Segment 800 - Other - CO emissions at Qmax

충 THyGA

50

40

60

----EB1

-EB2

-0-EN1

15

-GA

----------------EB1

-E82

---------------EB2

-fi -

15

WP3 - Experimental Work Agenda

- Objectives of the WP3 (experimental work)
- WP3 Testing protocol and parameters studied
- Working method
- Results for the short-term tests
- Results for the long-term tests
- Conclusions

Long term: to observe possible appliances alterations (performances or physical alteration) in the long term (few month) with given H2NG blends.

- Possible alterations are monitored by measurements in the combustion gas (flue gas).
- The appliances tested will be dismantled at the beginning and end of the tests (visual observations).
- The idea of the long-term testing is to simulate a real testing in accelerating time by severe tests constrains (cycling of the burner, high temperature, possibly overload, etc.)

DGC's long term test rig is especially designed to monitor gas appliances performances over testing periods of several weeks or months.

From left to right: cooker experimental setup, probes setup for cookers and boilers experimental setup

The peaks are not reflecting physical changes of the heat input, but points measured under transient situations.

The graph on the right shows representative and comparable measurements using pure methane as a test gas (G20). This allows to compare the data over time in order to detect changes which can be compared with the initial data.

Boiler 1 operated at maximum load with pure methane (G20)

Conclusion based on the experimental setup and test duration

2 cookers and 3 boilers were tested by DGC, 2 boilers by GWI

- Cookers were tested for more than 2500 hours and boilers for more than 3000 hours (equivalent to 2-3 years use).
- All emissions (CO, NOx) and efficiency levels stayed stable.
- Normal signs of wear and tear and normal amount of deposit.
- 30% hydrogen has no impact on the operation of the tested appliances (validated through short-term tests before and after the long-term test).

THyGA

D3-9
WP3 - Experimental Work Agenda

- Objectives of the WP3 (experimental work)
- WP3 Testing protocol and parameters studied
- Working method
- Results for the short-term tests
- Results for the long-term tests
- Conclusions

WP3 – Results for the short-term tests

Conclusions

THyGA's Segments / Type of appliance

- 100a Boilers fully premix
- 300 Cookers domestic
- 100b Boilers other
- 200 Water heaters
- 400 Catering equipment
- 500 Space Heaters
- 600 Combined Heat and Power (CHP)
- 700 Gas Heat Pumps (GHP)
- 800 Radiant heater & commercial air heaters

Modified slide taking into account late delayed ignition test results

WP3 – Results for the short-term tests Conclusions: 1) SAFETY & OPERATIONAL

All conclusions of the single segment groups are combined on this table, using their impact card

Please not that this table provides conclusions <u>without taking into</u> <u>account the delayed ignition test</u>

			H2 % Tested						
		0	0- 10	10- 20	20- 23	23- 30	30- 40	40- 50	50- 60
	Safety			simple mitigation (3)	mitigation t	o be defined	4	7	10
100a Boilers fully premix	Safety with mitigation			Dedicated	adjustment m	ethodology	1	4	7
	Operational								
100b Boilers Not premix	Safety								3
	Operational								
200 Water besters	Safety						1	1	1
200 Water heaters	Operational								
300 Cookers domestic	Safety					2	8	8	10
	Operational								
	Safety			simple mitigation (1)	mitigation to	be defined (2))		
400a Catering equipment – Premix	Safety with mitigation			mitigation (1) Dedicated adjustment methodology					
	Operational						vgolot		
400b Catering	Safety					1	1	1	1
equipment – Not premix	Operational								
500 Crease Liester	Safety								1
500 Space Heaters	Operational							flame aspec	t
600 Combined Heat and	Safety					1	1	1	1
Power (CHP)	Operational								
700 Gas Heat Pumps	Safety								
(GHP)	Operational								
800 Radiant heater &	Safety								
commercial air heaters	Operational								

NOT INCLUDING DELAYED IGNITION POTENTIAL ISSUES OR OTHER POSSIBLE NOT IDENTIFIED ISSUES

Modified slide taking into account late delayed ignition test results

WP3 – Results for the short-term tests

Conclusions: 2) SAFETY and delayed ignition

The **delayed ignition** test was made on **few appliance only** and analysis of the results and inputs came after the workshop.

In case of delayed ignition, relevant hydrogen concentrations in natural gas leads to more violent ignition.

- For concentrations up to 20% H2, the impact has proven not to be detrimental or dangerous on the tested appliances equipped with a fan in the combustion circuit, but...
- ... inappropriate onsite adjustment, if possible, may increase the risk on an unacceptable impact (material deterioration and/or user hazard) of delayed ignition due to accumulation of a flammable mixture with a higher energy content.

<u>Appliances equipped with specific partially premixing burners without a fan in the combustion</u> <u>circuit</u> (i.e. appliance type B11BS) used in certain types of boilers and water heaters <u>seem to be</u> <u>sensitive to delayed ignition</u>. No light-back occurs, but the unburned gas accumulates also downstream of the burner. When this accumulated unburned gas is lighted it creates a flame at the injector

Modified slide taking into account late delayed ignition test results

WP3 – Results for the short-term tests Conclusions: 2) SAFETY (excluding delayed ignition)

20%H2 should not be an issue

With appropriate mitigation this could be higher, but above 30% more issues are appearing (FB etc.)

Other safety aspects which do not present problems

- Both impacts of "low air temperature (- 10 °C)" and "Flue gas pipe length" have been tested on few appliances (boilers) and the results from the test done show no impact of hydrogen.
- ROC (PLUG FLOW) is generally not showing issue (generally variation from 0 to 40% H2 and the other way round). However for some cooking hobs the test has revealed issues that seems more related to the percentage of H2 rather than the Plug Flow.
- The **delayed ignition** test was made on **few appliance only** with 30% H2.
- Fluctuation of the auxiliary energy was tested, without impact on safety.
- Long-term (limited time) consisted in testing appliances for few hours when possible. Some tests were

WP3 – Results for the short-term tests Conclusions: 3) PERFORMANCES

In general, under the conditions of the THyGA testing (= copy the reality of the field):

- H2 has no or only small impact on efficiency but for boilers where we see a slight increase of efficiency on Hi due to higher heat recuperation on condensation with the testing conditions used.
- Heat output decreases with H2 injection which could prove to bring comfort issue for domestic hot water or cooking appliances
- NOx is decreasing with H2
- CO is decreasing with H2

Overall Impact of H2 on								
	SEGMENT	Efficiency	NOX	СО	CH4			
100a	Boiler premix	+	-	-				
100b	Boiler NOT premix	0	-	-				
200	Water heater	0	-	-				
300	Cooker dom	0	- (*)	-				
400a	Catering premix	NM	-	-				
400b	Catering NOT premix	unclear	-	-				
500	Space heaters	0	-	unclear				
600	CHP	0	unclear	unclear				
700	GHP	0	-	-				
800	Radiant heater & commercial air heaters	-	unclear	-				

(*) can suddenly increase for H2 >40%

THyGA

D3.8

Agenda

9h00 / 9h15	Welcome, Introduction and rules to the workshop	Alexandra Kostereva
9h15 / 9h30	THyGA - Objectives and organization of the project	Patrick Milin
9h30 / 10h00, inc. question	WP4: certification for new appliances	Kris De Wit
10h00 / 11h20, inc. question	WP3: H2NG blends impact on appliances	Jean Schweitzer ; Henri Cuny
11h20 / 11h40	Coffee break	
11h40 / 12h30, inc. question	WP5: appliances on the field	Lisa Blanchard ; Stéphane Carpentier
12h30 / 13h00	Conclusions and perspectives	Alexandra Kostereva ; Patrick Milin

WP3 & 5 – Appliances installed on the field

Ż

WP3 & 5 – Appliances installed on the field

Gas line tightness

WP3 – Gas line tightness in 40%H₂ + 60%CH₄ Objectives

Evaluate of the tightness of the components located on domestic and commercial gas lines from the gas meter to the end user appliance, in presence of a mixture $40\%H_2+60\%CH_4$.

- Components taken from installations being used currently in Germany, Denmark, Belgium and France.
- Testing pressure: 35 mbar.
- Comparison with admissible standard leakage rates: 1 l.h⁻¹ (NEN 7244-7, gas distribution network) and 0.1 l.h⁻¹ (EN 30-1-1:2021, cooking appliances burning gas).

THyGA

THyGA D3.7

WP3 – Gas line tightness in 40%H₂+60%CH₄

Background on similar projects

HYDelta

Evaluate if tightness requirements need to evolve between NG and 100% H₂.

Measure the pressure drop from 30 mbar, 100 mbar and 200 mbar in N_2 , NG and 100% H_2 for 1min.

No clear variations of flow rate between the couplings. Pressure drop at 30 mbar is less accurate.

Ukrainian consortium

Tightness and safety of the gas distribution network: $100\% H_2$ and mixture CH_4/H_2

Fig. 2. A fragment of the equipment at the test site Pressure drop at high pressure: 3-6 bar for 7 days and low pressure tests: ~ 100 mbar for 7 days.

Difficulty to measure at low pressure due to the strong influence of the temperature.

THyGA WP3 – Gas line tightness in 40%H₂+60%CH₄

Testing methodology

Pressure drop testing

Short term test

P = 35 mbar

Gas: Air, He, 60%CH₄ + 40%H₂

Stabilisation duration: 15 min

Test duration: 10 min

RT

D3.7

Monitoring the temperature

Long term test

P = 35 mbar **Gas:** Air, He, 60%CH₄ + 40%H₂ **Stabilisation duration :** 15 min **Test duration:** Up to 10 days RT

Monitoring the temperature

Pressure

gauge

Thermocouple

End of a line under testing

WP3 – Gas line tightness in $40\%H_2+60\%CH_4$

Presentation of the gas lines (1/2)

N°1

THyGA D3.7

N°5

01-06-2023

N°3

Connexions were all cleaned, and most of them were tightened with loctite before the tests.

충 THyGA

WP3 – Gas line tightness in $40\%H_2+60\%CH_4$ Presentation of the gas lines (2/2)

N°8 N°6 N°7 LIGNES COLIS 4 5

N°9

THyGA D3.7

01-06-2023

THyGA - Final Workshop

충 THyGA

WP3 – Gas line tightness in $40\%H_2+60\%CH_4$

Results – 10min tests

		He Air		He Air 60		He Air e		60% CH	4 + 40% H 2
Line	Volume	ΔΡ	Leakage flow	ΔΡ	Leakage flow	ΔΡ	Leakage flow		
	I	mbar	NI.h ⁻¹ , x10 ⁻⁴	mbar	NI.h ⁻¹ , x10 ⁻⁴	mbar	NI.h ⁻¹ , x10 ⁻⁴		
1	0.18	0,63	6.24	0,62	6.1	-	-		
2	^{1.15} Mai	n findinas:					-		
3	3.32	J				05	-9.9		
4	0.4€ Di	fficulty to ob	tain accurate	eresults at lo	w pressures	45	-11.3		
5	10.5 (5	supported by	other project	<i>ts</i>).		04	-24.1		
6	8.24 • No	o significant	difference be	tween the th	ree gases.	25	111.5		
7	0.22 - Al	I the measur	ed leakage ra	ates are belo	w 0,1 l.h⁻¹	35	4,2		
8	0.74		_)6	2.6		
9	0.35	0, 4 0	0.0	0,40	1.9	-0,19	-3.8		
10	0.42	0,48	11.1	-0,07	1.7	0,48	11.2		

THyGA

THyGA WP3 – Gas line tightness in 40%H₂+60%CH₄

Results – 100 hours tests

Strong influence of the temperature (*supported by other projects*).

충 THyGA

WP3 – Gas line tightness in 40%H₂+60%CH₄

Results – 100 hours tests

Line	P1	P2	T1	Т2	ΔΡ	Duration of the test	ΔΡ
number	bar	bar	°C	°C	bar	h	NI.h ⁻¹ , x10 ⁻⁴
L1	1,0260	0,999	21,447	21,702	0,028	30	1.66
L2	1,0342			• · • • •	• • • •	80	4.0
L3	1,0358	Main findin	igs:			284	1.4
L4	1,0358	 All the me 	asured leakage	e rates are belo	w 0,1 l.h ⁻¹	69	0.8
L5	1,0335	1,03265	23,561	23,774	0,002	70	2.4
L6	1,0349	1,02205	21,984	22,816	0,016	251	5.1
L7	1,0372	1,03585	22,54	22,231	0,000	200	2.9E-3
L8	1,0360	1,00105	22,443	22,108	0,034	80	3.1
L9	1,0355	1,0072	22,4	22,324	0,028	70	1.4
L10	1,0355	1,0357	22,078	22,058	0,000	71	-1.6E-2

THyGA

WP3 – Gas line tightness in 40%H₂+60%CH₄

Tightness test conclusions

- At those low pressures:
 - No differences observed between leakage rates in air, He and in the H₂NG blend;
 - If no leaks in NG and air --> no leak in H₂ (*HYDelta results*)
- After about 200 hours of test, no deterioration of the components or loss of tightness was observed.

 Generally the pressure drop measured on the reviewed lines were under the standard criterion (11.h⁻¹; 0,1%.h⁻¹).

THyGA

WP3 & 5 – Appliances installed on the field

Condensates

WP5 – Condensates

Does H2 injection involve extra condensation in flue duct?

Problem: H2 +O2 → H2O. MORE WATER? MORE CONDENSATION?

Target: non condensing boiler--> may alter duct material not designed to handle it

%H2O calculated from measured lambda and flue/fuel gas compositions

Dew point temperature calculated from Antoine's law

- Depends on %H2O only
- <u>https://en.citizendium.org/wiki/Water_dew_point</u>

$$T = rac{1668.21}{7.09171 - \log_{10} \ p_w^o} + 45.15$$

THyGA

WP5 – Condensates %H2O in flue gases

%H2O usually decreases with %H2 → caused by the increase of the air excess

THyGA D5.2

WP5 – Condensates

Condensation at Qmax?

Little impact of %H2 in gas on dew point temperature At Qmax, Tflue are much higher than dew point temperature \rightarrow **no risk**

24-03-2022

THyGA

WP5 – Condensates

Condensation at Qmin?

THyGA

0%-20%H2 , there is not much difference \rightarrow no action required

On some boilers, temperature difference between Tflue and dew point temperature is not so high, even for CH4.

- What are the « good practices » of installers/manufacturers ?
- Possible mitigation: increase Qmin for the most critical boilers to avoid condensation in flue duct ? \rightarrow higher Tflue₃₁

Natural draught

THyGA

D5.2

133

Flue gases flowrate

• When $\rho_{FlueGases} << \rho_{Air} \rightarrow$ flue gases go up

- if Qflue(H2NG) <= Qflue(natural gas) \rightarrow no problem
- if Qflue(H2NG) > Qflue(natural gas) → increase of pressure drop: requires attention

• When $\rho_{Air} < \rho_{FlueGases}$ flue gases can't go up \rightarrow no

Not treated here: Impact of flue duct (on temperature)

WP5 – Natural draught

Considerations

Buoyancy:

natural draft

Measured during THyGA project:

- Boiler inlet: gas flowrate, gas composition
- Boiler outlet: T flue gases, %CO2, %O2

Calculated:

- λ (air/fuel equivalence ratio): calculated from %CO2+gas composition and/or %O2
- Wet flue gas composition: calculated from gas composition and lambda
- Flue gases flowrate: calculated from gas composition, gas flowrate and lambda
- **Relative density**: calculated from flue gases composition and temperature

WP5 – Natural draught Flue gases flowrate

THyGA D5.2

- Flue gases flowrate is stable or decreases with %H2
 - No problems expected

WP5 – Natural draught Relative density (Qmax)

- Flue gases released in ambiant air → rho(Tflue)/rho_air(15°C)
- Relative density is low compared to 1 (if relative densities of flue gases and air are identical, there is no draft)
- Small increase of the relative density, but nothing critical
- @Qmax, no problem with natural draught

THyGA

THyGA D5.2 WP5 – Natural draught Relative density (Qmin)

- At Qmin:
 - Flue gases flowrate is lower
 - But relative densities are higher
- Relative densities are stable with a small tendency to increase.
- No natural draught problems are expected for 0-20%H2

충 THyGA

WP5 – Natural draught

Relative density (Qmin) with Tair=35°C

Worst case:

THyGA

- Summer conditions
- Hot water production
- At Qmin, with an external temperature of 35°C, the relative density is still <0.9
- Natural draft is still effective
- 0-20%H2: no problem expected compared to CH4

• A gas mixture with 20%H2 has a very low impact on natural draft and condensation

- In most cases, flowrate of flue gases remains constant or decreases
- At **Qmin**, in the **worst case**:
 - Relative density of flue gases, increases from 0.816 to 0.822 (@40%H2) less than 1%
 - Even considering an air temperature of 35°C, relative density of flue gases is still lower than 0.9 (natural draft possible)
 - Difference between Tflue and TDewPoint decreases from 29°C to 25°C (@40%H2).
- In both cases, this evolution remains within safety margin
 - manufacturers/installers should compare these results to their « good practices »
 - If required, an increase of the heating power at Qmin could solve the problem.

Adjustment

WP5 – Adjustment

Reminder: where do the problem occur?

- Adjustment problems (high CO emissions) occur in the following conditions
 - Adjustment with lowest Wobbe Index gas (EULow+20%H2)
 - Use with the highest Wobbe Index gas (EUHigh)

- The Wobbe Index jump is then 7.24MJ/m3
- More than during certification tests

THyGA

충 THyGA

WP5 – Adjustment

Adjustment with CO2: why it is not recommended with H2

$$\%O2 = 21\% - \frac{21\%}{\%CO2_{max}} \%CO2$$

λ	Air—fuel equivalence ratio
Va	Volume of air required to burn 1m3 of gas (m3 of air/m3 of gas)
Vf0	Volume of dry burnt gases generated by the combustion of 1 m3 of gas (m3 of flue gases/m3 of gas)
%CO2max	The stoichiometric percentage of CO2

Ref gas	Va	Vf0	Vf0/Va	%CO2max	Lambda (CO2 adj)	Lambda (O2 adj)
G20	9,56	8,56	0,90	0,12	1,30	1,30
Eulow	9,14	8,23	0,90	0,12	1,29	1,30
EUHigh	10,52	9,45	0,90	0,12	1,33	1,30
G20+20%H2	7,79	6,96	0,89	0,11	1,22	1,30

In the presence of H2:

- CO2 adjustment leads to a richer flame ♥
- O2 adjustment = constant air/fuel equivalence ratio 👍

THyGA

GWI08 - CO emissions @ Qmax 1 600 1.400 1,200 Manufacturer's range of adjustment 1 000 800

WP5 – Adjustment

02 VS CO2

 Adjustment based on CO2 leads to a richer adjument (with %H2)

- When WI goes up, %O2 goes down
- It causes CO Emission problems
- O2 adjustment is the best way to adjust a boiler close to factory settings

THyGA

WP5 – Adjustment Impact of O2 adjustment: Test results

THyGA

- High decrease CO emissions @Qmax, but also NOx decrease
- A Qmin, CO and NOx emissions remain constant and very low

Boiler	Qcal	Adjustment	CO DAF (ppm)@Eul ow+20%	CO DAF (ppm)@EU High	
GWI08	Qmax	CO2	87	1347	
GWI08	Qmax	02	53	285	
EN01	Qmax	CO2	93	664	
EN01	Qmax	02	60	288	
EN02	Qmax	CO2	9	41	
EN02	Qmax	02	7	22	

	Boiler	Qcal	Adjustment	CO DAF (ppm)@Eul ow+20%	CO DAF (ppm)@EU High	
	GWI08	Qmin	CO2	64	45	
	GWI08	Qmin	02	62	43	
	EN01	Qmin	CO2	5	5	
	EN01	Qmin	02	7	9	
	EN02	Qmin	CO2	14	2	
74.	EN02	Qmin	02	18	6	THVG

			NOx DAF	NOx DAF
Boiler	Qcal	Adjustment	(ppm)@Eul ow+20%	(ppm)@EU High
SWI08	Qmax	CO2	68	147
GWI08	Qmax	02	32	134
EN01	Qmax	CO2	61	225
EN01	Qmax	02	39	155
EN02	Qmax	CO2	64	237
EN02	Qmax	02	39	185

Boiler	Qcal	Adjustment	NOx DAF (ppm)@Eul ow+20%	NOx DAF (ppm)@EU High	
GWI08	Qmin	CO2	12	25	
GWI08	Qmin	02	11	27	
EN01	Qmin	CO2	16	56	
EN01	Qmin	02	21	69	
EN02	Qmin	CO2	42	36	
EN02	Qmin	02	12	30	

WP5 – Adjustment Combustion control (CO sensor)

• CO sensor in flue gases

THyGA

- Qmax: Pollutant emissions are lower than a CO2 adjustment
- Qmin: CO and NOx concentration are close for auto-adjustment / CO2 adjustment

WP5 – Adjustment Alternative methods

Alternative adjustment methods could help **if no O2 analyser is at hand** or if the installer can have information about the %H2 of the gas

No O2 analyser

THyGA

- Forbid adjustment (boiler adjusted to G20 behave well when factory settings are kept → GASQUAL, THyGA) 👍
- If %H2 of the fuel gas is known: update %O2 adjustment value according to %H2 👍
- Limit the Wobbe range of delivered gases
 - Difficult in the current Ukrainian war context \rightarrow increase of Wobbe range (bioCH4 to LNG) \square
 - Fine if only bioCH4+H2 mixtures are used. △
- Boiler auto-adjustment
 - Ionization probe: WI fluctuations of NG compensed by the probe, not %H2 → low emissions and safe behaviour regarding flashback (λ increase with %H2)
 - CO sensor: low pollutant emissions compared to CO2 adjustment. No flashback during tests. Data still need to be processed.
 - **O2 sensors** are also an option to consider

Gas conversion strategies

THyGA D5.3 WP5 – Gas conversion strategies Situation 2030/2050

Potential evolution of market share of H2NG boilers in Europe.

- Mitigation approaches (1st thoughts):
 - Wait untill all appliances are H2-ready → too long
 - Replace all non H2-ready appliances → costly (5)
 - Check compatibility of all non H2-ready appliances → costly (\$)

- An alternative solution must be found
 - How to be sure that non H2-ready appliances operate well and safely with H2NG mixtures ?

WP5 – Gas conversion strategies

"Best practice" methodology (based on experience)

Ľ]	

THyGA

D5.3

Dialog between gas operators and appliances manufacturers:

- What is/was done for L to H conversion projects
- What is being done country per country (France, Italy,...)
- Gas operators
 - how much %H2 at max ? (ex: France = 2%/2023)
- Manufacturers & manufacturer associations:
 - Which appliances can operate up to x%H2
 - Which appliances can't operate up to x%H2
 - Appliances for which more investigations are required

 Build together a common (European) database of appliances compatibility

Some appliances won't be in the list. Can a safety check solve the problem ?

D5.3 WP5 – Gas conversion strategies Example of safety check: HyDeploy

Safety check of used appliances was firstly introduced in the HyDeploy project for ALL used

appliances

It is also used in the the "Wasserstoff-Insel Öhringen" project, but for **some appliances** only

Project phase 1

Lab test of representative appliances

- Fireplaces, hobs and boilers
- Test gas ≈30% H2

Progressive increase of hydrogen by steps of 5% H2

Project phase 2: used appliances

Safety check

- Gas appliances and network → safe with current gas
- Test with a reference gas (G20)
- Tests with 2 H2NG at different concentrations

 $_{\mathsf{THyGA-Final}}$ installation of a CO detector

tegies

WP5 – Gas conversion strategies Example of safety check : Risk analysis

Risks identified

Gas leakage

THyGA

- No significant risk increase compared to NG, but a safety check can't be done without this verification
- CO emissions
 - Appliance must perform safely before any %H2 injection
 - Appliance must perfom safely with H2NG mixture
- Malfunctions due to inadequate adjustment
 - Avoid excessive CO emissions, overheat,...
- Flashback
 - No flashback should occur with H2NG mixtures
- Delayed ignition
 - Ignition should be fast enough to avoid big volumes of unburnt H2NG to ignite
- Material compatibility

WP5 – Gas conversion strategies

Example of safety check : in practice (1/2)

Gas leakage: two test options

Pressure drop

THyGA

- Non rotating of the flowmeter
- A limit value have to be established

- Appliances are clean
- Appliances are maintained (certificate)

WP5 – Gas conversion strategies

Example of safety check: in practice (2/2)

From which %H2 should we implement it?

Gas composition must be under control: 2 gas cylinder used

- G20 (current status)
- G22 (limit gas)

THyGA

D5.3

G20 is also used for adjustment to factory settings

G22 is recommended instead of G222 because of the limited time available on site

Gas cylinder can be connected at the flowmeter

Gas cylinder weight and capacity is an issue:

- M20 (4 m3 but 35 kg)
- S11 (2.3 m3 11 kg)

(3) Plug gas cylinder to the domestic network

THyGA WP5 – Gas conversion strategies

Example of safety check: Flashback detection

Flashback detection might not be so easy

- Sound when premixed H2NG/air mixture is ignited \rightarrow needs constant attention
- Visually: the premix part of the flame disappears. Only the diffusion flame is visible (reddish)
- Premix appliances: flame not always visible but flame detector should shut down the appliance (\rightarrow to be checked on more appliances)

WP5 – Gas conversion strategies

Example of safety check: estimated duration

Total safety check duration	Duration (min)	Option duration (min)	remarks
Test description to the customer	5		
Visual check of appliances/get mainainance certificate	5		
Leak detection			
Check rotating flowmeter	5		
switch off all appliances	2		
Check non rotation of flowmeter	10		
rotating flowmeter (leak identification)		15	
Plug bottles	10		
Switch to G20			
Purge gas network from air	5		
Boiler check emissions (CO before adjustment) - adjustment		20	
Check CO emissions G20 - Boiler	10	10	10 more minutes if >1000ppm
Check CO emissions G20 - Cooker	10	10	
Switch to flashback gas			
Check/CO & flashback Qmax - Boiler	10		
Check/CO & flashback Qmin - Boiler	10		
Check/CO & flashback Qmax - Cooker	10		
Check/CO & flashback Qmin - Cooker	10		
Unplug bottles + check tightness	10		
TOTAL CHECK TIME	112	55	

- 2 hours long (for one cooker and one boiler)
- More time required if adjusment / extra leak detection is required
- Requires well trained technicians
- Weight vs capacity of bottled gas could be a problem
- Optimization is required
- Cost evaluation: safety check vs replacement must be done
- Note: duration checked within the THyGA project but not presented here

THyGA

THyGA D5.3 WP5 – Gas conversion strategies Conclusions

- Make a list of appliances: OK, not OK, or in between
 →importance of the segmentation
- Build experience for NG \rightarrow H2NG conversion
- Minimize the number of safety checks to be performed
- Safety check:
 - About 2h
 - Bottled gas plugged donwstream of gas meter
 - Ref. gas + H2NG limit gas

Conclusion: more investigations are needed in order to facilitate the arrival of H2NG mixtures

Segmentation used in L to H convertion project (France)

Conclusions and takeaway

Conclusions and take-away Project conclusions « in a nutshell »

Gas is an energy vector needed for the transition to reach carbon neutrality. In that sense, it is really important to work on every option such as blending to multiply the available pathways.

The main strength and characteristic of THyGA is the very extensive test campaign, on around 100 different appliances, with a great variety of systems... but even there, we are touching a part of the whole range of installed appliances !

Only the fraction of the results have been shown and will be provided in the technical reports, projects members will do their best to go on using the results to support the industry's projects

Our conclusions are that blending up to 20%H2 is technically feasible but implementation would need a collaboration with DSO, energy provider, Member states... Especially, 3 topics should be adressed by all stakeholders: delayed ignition on some appliances, liability and adjustment !

Liability

THyGA showed that the majority of installed appliances technically cope with 20%H2 for end-use but there are liability issues doing that

As explained in WP4, in reference to the Gas Appliance Regulation, existing appliances did not have to be designed for use of H2NG; so H2NG supply cannot be considered as 'normal use' and so **manufacturers would not be liable for any negative impact caused by supply of H2NG mixtures** (except recent 20%H2 certified boilers or radiant heaters)

Member States are working on methodologies and concertation to evaluate the percentage of hydrogen that can be injected within their distributed natural gas. A harmonization of these methodologies and sharing of the results would greatly favor the implementation of blending.

<u>THyGA recommandation N°1</u>: to favor knowledge sharing between Member States and gather all stakeholders (manufacturers, gas distributors, safety authorities...) to discuss how H2NG should be dealt with for existing appliances

THyGA

D6.5

Adjustment

Conclusions and take-away Adjustment

						H2 %	Tested			
			0	0- 10	10- 20	20- 23	23- 30	30- 40	40- 50	50- 60
	100a Boilers fully premix	Safety			simple mitigation	mitigation to be defined				
No issues		Safety with mitigation			Dedica	ated adjust				
Safety issues		Operational								
Potential issue	100b Boilers Not premix	Safety								
Operational issue		Operational								
Not tested extensively	200 Water heaters	Safety								
Not tested		Operational								
300 Cookers domestic	Safety									
	Operational									
	400b Catering equipment - Not premix	Safety								
		Operational								
	400a Catering equipment – Premix	Safety			simple mitigation	simple mitigation to be defined				
		Safety with mitigation			Dedica	ated adjust	justment methodology			
	500 Space Heaters	Operational								
		Safety								
		Operational							flame	aspect
	600 Combined Heat and Power (CHP) 700 Gas Heat Pumps (GHP)	Safety								
		Operational								
		Safety								
	Operational									
	800 Radiant heater & commercial air he	s Safety								
		Operational								

Adjustement is an important parameter to consider for blending. THyGA showed promising solutions (O2 adjustment, forbid adjustment...) but it is important to pay attention to National or Local regulation which could impede implementation

THyGA recommandation N°2: stakeholders should discuss how to solve this in practice

THyGA

D6.5

THyGA - Final Workshop

New slide taking into account late delayed ignition test results

Delayed ignition

Conclusions and take-away Delayed ignition

Appliances equipped with specific partially premixing burners without a fan in the combustion circuit (i.e. appliance type B11BS) used in certain types of boilers and water heaters seem to be sensitive to delayed ignition. No light-back occurs, but the unburned gas accumulates also downstream of the burner. When this accumulated unburned gas is lighted it creates a flame at the injector.

Few of these appliances are actually on the market, but according to outfindings it seems recommended to reconsider the test method and conditions to take in account reasonably foreseeable worst cases, to reassess the delayed ignition risk systematically for appliances not specifically designed for natural gas containing relevant H2 concentrations, especially when on-site adjustment is allowed/possible.

THyGA recommandation N°3: more extensive testing is needed to completely assess the delayed ignition risk and work on mitigation measures (reduce the ignition safety time, avoir inappropriate on-site adjustment...)

Final steps for the project

Final steps for the project

A wealth of information on the project website

Reports, articles, newsletters & replays of several workshops

WGC2022.ORG | #WORLDGASCONFERENCE

REGISTRATION REGURED FREE.

REGISTRATION

REGISTER NOW I

REQUIRED

Final steps for the project

Exploitation of the results

• 22 Public deliverables (6 to come early April)

- Open Data (Project test protocol, Reporting test sheet, Agregated test results, Roadmap tool)
- THyGA results will be disseminated to CEN TCs and members can support presentations in technical meetings

Thank you !

To all partners

to the Clean Hydrogen Partnership and the European Commission to the advisory panel members and the manufacturers

THyGA will go on in conferences and technical events! See you soon !!

Find Us Online

All public presentations and deliverables of the project will be available on the project website

GERG LINKEDIN & WEBSITE

For regular updates, you can also follow the GERG <u>LinkedIn</u> page and <u>website</u>

CONTACT EMAIL

Do not hesitate to contact us by email at <u>contact_thyga@engie.com</u>

Ż

Thank you for your attention

Do not hesitate to contact us by email at contact_thyga@engie.com