Warm-Up Question: In times of travel restrictions – where would you love to be right now?

What type of organization do you represent?

Appliance Manufacturer

Gas industry

What is an end of expertise3 multiple possible)

Which part of the Workshop are you most interested in?

Which of the following aspects interest you the most?

Make the gas green

Emission reduction

Development and application of new technologies

Broad decarbonization of the building sector

Flexibility for renewables

REDUCTION OF THE CARBON FOOT PRINT

decarbonisation of heat

Reliability of products

Ensuring the flame in cooktop appliances is visible

The green future for gas industry and the local production of fuels in our countries

Developing new combustion systems to accommodate a wide variation in gas quality

accelerate the energy transition for non-electric sector

More hydrogen in grid

emission reductions

gas cooking appliances gaining market towards electric cooking appliances integration of variable renewables

Lowering emissions

The reduction in emissions - net zero capability

Go green! Possibility to explore new market.

brings changes to the energy system

Market application

Good for environment - Exciting new project.

as an induvidual the impact on reducing our impact on climate change reduction of CO2

To secure the future of the gas industry by decarbonising gas

Meeting the decarbonization goals

Reduce CO2

energy systems integration

decarbonisation

Greening the gas grid

Emissions/ renewable gas

clean energy, CO2 reduction

Decarbonisation

It gives a chance to these appliances also in the future with green energy

The potential of a 100% green gas in the future with biomethane + H2

Make the gas green

Alternative energy

The Potential to leverage the existing gas grid

Reduce emissions

Supporting lower GHG emission reduction

Hydrogen is a future solution to ensure sustainability and future for uses.

What will be the requirements for components, e.g. gas valves?

Greening the gas

That H2 for heating can offer a genuine alternative means of decarbonising heat to electric heat pumps (where is makes sense)

lst the answer to the decarbonisation and long term use of secure nergy supply

Decreasing of CO2

Cost-efficiency of hydrogen/methane blends for transmission pathway to carbonneutrality

About the potential of green H2, the reduction of CO2 emissions and less dependance on fossil fuels

That this enables green power and heat all year long and full decarbonization

Development of new technologies and design approaches

A carbon neutral energy system

as a company the chance to get more opportunities

Having no CO2 emissions at home

Power-to-Gas/Sector Coupling, Long Term Storage, Future of Gas Grid

Decarbonization and emissions reduction

Hydrogen % limit in the grid

The possibility to reduce the CO2 emissions using the current gas infrastructure

Decabonisation of heat

Decarbonisation of gas

Store electricity

Developing low NOx systems

Carbon-free energy at the point of use for a large number of users!

Retain gas appliances in a low carbon future

keep usage of gas in the field maintain safety improve combustion quality

Reduction of CO2-emission compared to fossile fuel and money savings because of avoidance of CO2-tax payments.

The potential to decarbonize the natural gas use and make it a sustainable energy option for our future society

Using a hydrogen blend can introduce a lower carbon gas without changing the appliances that are already in the field

Giving gas a green future.

Energy storage capability

If once for ex. 20 Vol.% of hydrogen in natural gas is accepted for installed appliances, there is an easy way to reduce CO2 and contribute to climate protection.

How to prepare the existing market and new appliances for more and more green gas

the possibilities to keep current infrastructure of gas network with few modifications

Clean energy carrier

extension of using existing gas grids for 20 more years

optimal design of future energy system

As an alternative for NG

Decarbonisation

Getting gas a key partner of the energy transition

Hydrogen is a future solution to ensure sustainability and future for uses.

Continuation of Gas Appliance Market

Supports balancing the supply of electricity

decarbonization of heating and industrial heat

New market opportunities

Green Gas Possible replacement gas

A reduction in dependency on natural gas

Fon natural gas substitution, I would prefer to push biogas instead of H2, because reduction of use is not that big for the probable % will be finally introduced.

Foster multi-technology and multi-energy approach

Insight into indirect cost of technology change in future decarbonisation

New market opportunity

The way away from natural gas

A interesting job for the years to come!!

Green gases

peak shaving for electricity

Power to gas - the potential and cost of technology implementation

Power to Gas

H2 is a good answer vs the "all electric" tendency

Where does the hydrogen come from?

Safety

knowledge of the dangerous/safety level

Availability of carbon-neutral hydrogen

Safety concerns in the domestic sector

Material resistance, leakage, storage. Last but not least, public opinion

Variability in H2 concentration over time

It provides an attractive alternative to electrify everything

Network availability and public awareness of these solutions

under estimation of the risk that the end users may face using existing appliances Condensation and NOx

Local legislation

Hydrogen Production

Preferably hydrogen use in industry and mobility, heating of households comes last because most expensive option

Risk assesment for H2 dedicated applliances and longlasting political support on H2 projects

The acceptance of a certain rate of hydrogen admixture to installed appliances.

Regulation of Hydrogen Mixtures

Missing project and business development skills /resources of DSO/TSOs and innovativeness

Leakage and brittleness

Safety-related risks that only occur in long-term tests or only at the end of the service life of the applications

Methane/hydrogen admixture gas quality fluctuations

20%

25-30%

Safety

Public perception

Hydrogen concentrations in the range 50 - 80%

Appliance Safety and reliability over time

safety issues

Flame supervision

Safety unknown with existing appliances

Developping a dedicated H2 net.

standardization of the test methods

Possible obstacles coming from the huge number of obsolete gas appliances in the stock

Testing of older appliances - establishing how many older appliances are in the field

Assessing the risks properly

Safety to end user. Cost

supply of sufficient green/blue H2

Safety and Performance

Dealing with variable H2%-ages.

leakage detection.

Standards Safety

Long-term reliability impacts

Enough production for all the comsumption in 2050?

variation of H2

hydrogen has an invisible flame: safety

Political level focus on H2 priority for industry & transport

Safety and reliability

Safety on Higher concentrations

Safety

Cost of conversion to run on high admixtures

Cost

Provide enough H2.

Safety

How appliances/applications will cope with important H2 concentration variations

Life time of the appliances

safety impact, knowledge gap

safety and performance

What is more useful for the future? Old lines with only a small amount of hydrogen or costly hydrogen lines?

how to detect leak and ensure safety

The more H2 content is high the more technical issues are to be solved (leakages, compatibility of Equipment...)

Switching or introduce end appliances in every household

Safety: flame stability, the lack of color of the flame, detection by odor...

Transition Roadmap considering the variety of (household) appliances

How to deal with current appliances - especially the certification for the use of hydrogen admixtures of the existing population

apart from tech issues, a key challenge will be about public acceptance Safety and performance

Support base of consumers

variable concentrations

safety for the end user

Tipping point: switching from x% of H2 to 100% of H2

Long Term Reliability / Wear and Tear Impacts

Ensuring Safety

To be able to harmonize on European level the needs and limitation of different existing appliances and to convince member states to adopt same legal decisions Ensuring that the hydrogen / methane mix is consistent in the supply pipes. A pocket of high percentage of hydrogen could cause problems with safety or lockout

to supply hydrogen to the heating market due to ist wide range of designs and age of Installation how to provide it to the heating market on a constant level and quality

Brittleness over the long run of pipelines

Most people don't realize the necessity of seasonal storage and therefore the need for hydrogen. This 'believe' in only PV and Wind currently stalls development

The absence of control systems

Where does the hydrogen come from?

Which level of hydrogen admixture do you consider realistic for 2030 in the distribution grids?

Which level of hydrogen admixture do you consider realistic for 2050 in the distribution grids?

Project Feedback

Afternoon feedback session - How do you feel?

Does the THyGA consortium work in a promising direction?

Can you give specific examples of projects or research areas where collaboration with the THyGA labs could be beneficial to you?

Appliance project and development

New technology for cooking

Grhyd project

Hy4Heat

Product reliability

new standards

Component testings

Testing of combustion controls

Define official rule fos H2 injection in the gas network

Can you give specific examples of projects or research areas where collaboration with the THyGA labs could be beneficial to you?

Forthcoming CEN / GERG PNR project

equipment testing and developments for H2 mix

Investigation on flame signal variation according to the H2%

Hy4Heat

Check appliances behaviour with different ng/h2 blenda

Injection project in Germany (DVGW - Avacon)

HyDeploy in the UK is doing a lot of testing and could support information oin longer term tests

long term tests

Cooking technology

Can you give specific examples of projects or research areas where collaboration with the THyGA labs could be beneficial to you?

International cooperation

drafting standards

The results of the literature review and testing programme will be useful for demonstrating safety during the testing of hydrogen admixtures

setting up automatic testing equipment

Analysis of risks and impacts / others appliances like professionnal (many kind of product) / others kind of heating like radiants ...

Hy4heat, BlueHY project UK, and PACE, but already saw them in your sheets.

HIGGS project

New Appliance control development

Develop test procedure for future appliances

Can you give specific examples of projects or research areas where collaboration with the THyGA labs could be beneficial to you?

Development of cooking appliances suitable to work with Hydrogen mixtures, still satisfying consumer need

HyDeploy

HYREADY

H100

Support standardisation in a horizontal way

DVGW 2050 roadmaps

Tests and literature for H2 blending 10-30% in natural gas pipelines and industrial facilities

Anticipate trends with feasibility activity

H2 injection controls into Transmission and distribution networks

Can you give specific examples of projects or research areas where collaboration with the THyGA labs could be beneficial to you?

Radiant tube heaters

test on catering equipments

ErP Directive

Develop standards suitable to demonstrate safety of appliances working with Hydrogen mixtures

I am a member of the HyDeploy project and it is more advanced than this but THyGA would help to support this work and HyDeploy has a lot of evidence if we can make it available

A push for innovation

Defining the most appropriate requirements for new appliances Impact of h2 on different boiler technologies

Future Fuels CRC appliance work (Australia)

Can you give specific examples of projects or research areas where collaboration with the THyGA labs could be beneficial to you?

Power2Gas project Rozenburg (Netherlands)

Transition plan proposal

Today for a complete Literature review and tomorrow for risk assesment of a H2 appliance

Train the designers of products in the smaler companies, learn the testing and handling with the right equipment

appliance certification

Warm Air Heaters

Raise up the interest towards H2 appliances development

Component suppliers can help support the project

Impact on industry - p.e. food/beverage production, chems or medicals

Can you give specific examples of projects or research areas where collaboration with the THyGA labs could be beneficial to you?

Promote long term survival of gas products

knowledge of tests results done and for new testings

Many questions regarding analysis of risk / kind of appliances with differents technologies / impact of H2 in the net: deadline for manufacturers?

Burner manufacturers are missing

collaboration

Sharing methods, data, results out of the consortium

Practical approach to the project goal.

Global project

Innovation

Educational benefit and awareness of wider industry concerns and solutions

The effort to test a large number of different appliances

Excellent coordination and information sharing

open communication

Collaboration

The opening to several stakeholders

Collaboration

professinalism and comprehensive approach

Long term tests

Green spirit

State of the art knowledge

Learning process for a hydrogen economy

Knowledge development and industry interaction

Open Communication

Actual testing of a large number of appliances

Number of aplliances

Results helping standardization

Sharing results with the gas community/manufacturer

It is good that manufacturers of the appliances are involved

Complete and practical approach.

Getting aligned

Sharing results

Combined industry experience working together

Collaboration

Sharing results

Real tests

Knowledge and sustainability

~

show impact on appliances

Great coordination

wide perimeter of study

Representativity

Joint work among different stakeholders

Sharing data, EU level project, systematical approach on literature review

liaisons; information exchange

Excellent Project Management!

Commercial appliances included

Integrating existing appliances

Practical approach will provide state of the art position regarding H2 intro

Obtain working limits of appliances

stress testing to the foreseeable limits

Transparent communication

Good approach

Good structured analysis approach

The European collaboration with integration of manufacturers.

Clarity and openess

Cooperation with stakeholders

a specific point on how to make the way to microCHP and Fuel Cells

a clear view on the safety margin between the operating range and the test range

More discussion on the H2 limits in steel pipe lines

How the results of the project will be actually taken up for the certification gas metering and calculations billing?

Which aspects do you miss in the THyGA project so far? What is your advice for us? (Multiple answers allowed)

Study how to get an approach to retrofit existing appliances

Radiant and warm air heaters

Clear direction of H2 evolution among many different scenarios

Knowing which existing Appliance will be effectively tested

Continue to share the project status and results.

hybrid HPs

You should downbreak on components level as welll.

Be strong. We love you!

More collaboration with component suppliers especially on historical designs

Which aspects do you miss in the THyGA project so far? What is your advice for us? (Multiple answers allowed)

provide slides of today, so we can talk to our contacts

Remember these are volume percentages in the fuel the CV difference means that most of the energy is still in the NG. We need to go to higher percentages, and

Large commercial/Industrial appliances

The gathered feedback (which had to be send in prior to 17th of April) on the proposed test procedure.

Involve more different gas users outside residential

appliances. They will also be impacted by H2 blends

Summary of national approach regarding H2 intro for the medium and long term

Advice: Concentration on the most realistic szenarios. eg. about 20 Vol.% H2 well adjusted, installed appliances in the field

No cakes at the meetings

Number of appliance tested per segment

Which aspects do you miss in the THyGA project so far? What is your advice for us? (Multiple answers allowed)

Further tests with higher H2 blending %, and with high pressure pipelines, underground H2 storage and industrial applications At the end, please think about which will be the best compromise between injecting H2 in grids and adapting products?

H2 beyond 60%

Not to measure withe same gas (e.g. 100% methane)

I miss testing of fuel cell mCHP, or budget to do this. Big OEM's can easily give a boiler for testing, which costs them some hundreds of euro's. We however as a startup can't give a 25k unit for testing although it would certainly add to the project

Check possible interaction of hydrogen with NG impurities during combustion

My son (on my knees right now) loves Hydrogen thanks to you

Research on public perception (but that's something for a different project, not necessarily THyGA)

Translation of the results into 'legislation' for Member States to allow for a certain percentage hydrogen in the current population of appliances

Which aspects do you miss in the THyGA project so far? What is your advice for us? (Multiple answers allowed)

At the end give an overview of the need for replacing old appliances

If you need new engineers after the boooom, let me know

A summary of product type - table and then the product selected to cover the type of products in that category - this could be by burner type

A specific point on how to make way to microCHP and fuel cells

Will Covid19 have an impact on our activities?

Distribute the slides of today

Before leaving: Would you recommend the THyGA Project to your colleagues (the ones you like)?

