

THyGA WP4

Certification & Standardization: workshop

K. De Wit

08-03-2023

Objectives of workshop

- A **WORKshop**, not just a presentation.
- Check thoughts on test gases.
- Now that the results of the testing (WP3) are available, it is time to couple the outcome of the testing to the identified risks of H₂NG supply.
- To do so, **check** if **all risks** are well **identified**.
- Comment: overlap with ongoing work in parallel!

Deliverables

D4.3 – thoughts on test gases and

- proposing <u>reference</u> and <u>limit</u> gases ;
- based on <u>current approach</u> regarding reference and limit gases ;

- D4.3 ... support for H₂NG risk analysis and assessment of gas appliance standards based on
 - a general risk identification regarding safety, performance and fitness for purpose ;
 - the results and findings from THyGA WP3 testing ;
 - the conclusions of existing WP2 (D2.2 and D2.3) and WP4 deliverables ;
 - the exchanges with relevant stakeholders \rightarrow workshop on 08/03 AM ;
 - and linked to the corresponding GAR (EU) 2016/426 essential requirements.

neration of risks introduced by H ₂ NG supply.	
from the properties differences between H ₂ and CH ₄ .	
ated to	
intellige of the stating for 2010 fight.	
	meration of rials introduced by H ₂ NG supply. from the properties differences between H ₂ and CH ₄ , side to tery [51] ; forformance [7] ; forformance [7] ; for a star propose [7], and to table of GAR executial requirements findings of WP3 testory for 20% H ₂ NG.

Framework

- Gas Appliances Regulation (EU) 2016/426 :
 - Appliances shall only be made available on the market and put into service if, when normally used, they comply with this Regulation.
 - an appliance is considered to be 'normally used' where the following conditions are met:
 - *it is correctly installed and regularly serviced in accordance with the manufacturer's instructions;*
 - it is used with a normal variation in the gas quality and a normal fluctuation in the supply pressure as set out by Member States in their communication on gas supply conditions;
 - *it is used in accordance with its intended purpose or in a way which can be reasonably foreseen.*
- Satisfying requirements of harmonized standards gives presumption of compliance/conformity to the essential requirements of the Gas Appliances Regulation:
 - appliance standards on boilers, cookers, etc. → EN 30 series, EN 15502 series, EN 17082, EN 676, …
 - standard on test gases, test pressures & appliance categories \rightarrow EN 437

EN 437

- Definitions:
 - gas family: group of gaseous fuels with similar burning behaviour linked together by a range of Wobbe indices

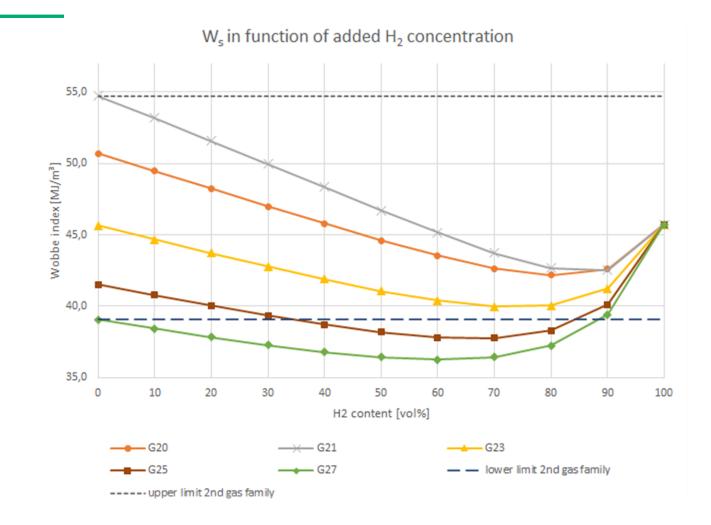
بي.

- gas group (like H, E, L): specified range of Wobbe index within that of the family concerned
 - Note 1 to entry: This range is determined on the general principle that appliances using this gas group operate safely when burning all gases within this range without adjustment.
 - Note 2 to entry: Adjustment of the appliance may be permitted in accordance with the special national or local conditions that apply in some countries.
- appliance category: means of identifying the gas families and/or gas groups for which a gas appliance is designed to operate safely and to the desired performance level.

EN 437

Definitions:

- **test gas**: gases intended for the **verification** of the **operational characteristics** of gas appliances
 - Note 1 to entry: Test gases include reference and limit gases.
- reference gas: test gas with which appliances operate under nominal conditions when they are supplied at the corresponding normal pressure
- limit gas: test gas representative of the extreme variations in the characteristics of the gases for which appliances have been designed


EN 437 – comments for H₂NG supply

- Definitions:
 - gas family: group of gaseous fuels with similar burning behaviour linked together by a range of Wobbe indices
 - similar burning behaviour:
 - probably OK up to 20 % H₂ (?)
 - Inked together by a range of Wobbe indices:
 - OK for H-gas as natural gas family range (2nd family) ranges from 39,1 up to 54,7 MJ/m³ and H₂ has WI of 45,88 MJ/m³
 - but not necessarily for L-gas

2nd gas family **OK for H-gas** up to 20 % H₂ based on similar burning behaviour and current 2nd family WI range

WI of H₂NG admixtures

EN 437 – comments for H₂NG supply

Definitions:

- **gas group** (like H, E, L): specified range of Wobbe index within that of the family concerned
 - Note 1 to entry: This range is determined on the general principle that appliances using this gas group operate safely when burning all gases within this range without adjustment.
 - Note 2 to entry: Adjustment of the appliance may be permitted in accordance with the special national or local conditions that apply in some countries.

Taking in account a min. W_s of 46,44 MJ/m³

H group (45,7 – 54,7 MJ/m³): WI stays <u>always</u> within range up to 7 % H2 E group (40,9 – 54,7 MJ/m³): WI stays <u>always</u> within range up to 60 % H2

Or limit the min. Wobbe index of NG? Or increase the Wobbe index range?

gas group limits do not need to change if H_2 limited to above concentrations; defining new gas groups can obviously overcome the issue.

EN 437 – comments for H₂NG supply

- Definitions:
 - appliance category: means of identifying the gas families and/or gas groups for which a gas appliance is designed to operate safely and to the desired performance level
 - fluctuating H₂ concentrations may compromise the above definition as it
 - widens the potential WI range of the gases supplied to the appliance
 - relevant H₂ presence increases existing risks (cf. light-back, delayed ignition, ...)

e.g. CEN/TC109 proposal

The appliance category needs to limit the H₂ concentration \rightarrow generally defined (e.g. I_{2H} includes H₂ varying between 0 and 20 %) or a supplementary identification on a max. acceptable H₂ concentration the appliance is designed for.

Same flame speed

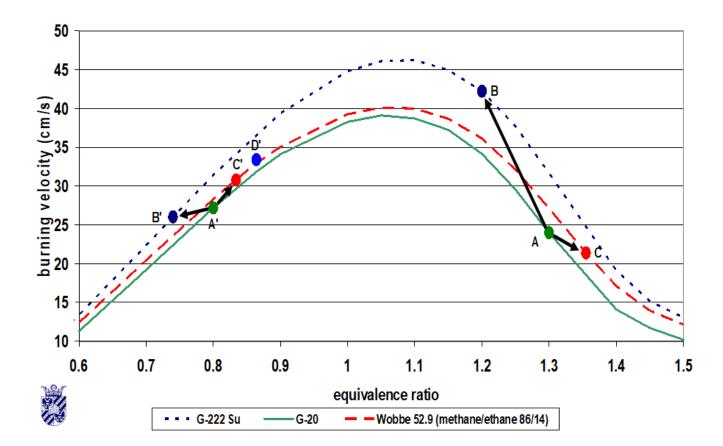
increase to be

calculated as

between G20 and G222?

concentration

EN 437 – comments for H₂NG supply


• Test gases: limit gases

- test gas representative of the extreme variations in the characteristics of the gases for which appliances have been designed
- current limit gases (for group H):
 - G21 87 % CH4 + 13 % C3H8
 - G222 77 % CH4 + 23 % H2
 - G23 92,5 % CH4 + 7,5 % N2
- \rightarrow incomplete combustion and sooting limit gas \rightarrow light-back limit gas
- ightarrow flame lift limit gas
- G24 68 % CH4 + 12 % C3H8 + 20 % H2 \rightarrow overheating limit gas
- G21 and G23 to be maintained as H_2 concentration may vary from 0% to m
- light-back limit gas: distinction between technologies
 - fully (lean) premixed burners: covered with G21 or G24 (?)
 - partial premixed burners + fully premixed burners with constant λ : for 20% H₂NG 65 % CH₄ + 35 % H₂ (= G22)
- overheating limit gas: G24 overload + flame speed → OK for fully premixed burners, but what about others? (?)

EN 437 – comments for H₂NG supply

Adequacy of G-222 as test gas for flashback for lean-premixed burners?

EN 437 – comments for H2(NG) use

- Test gases: **reference gas**
 - test gas with which appliances operate under nominal conditions when they are supplied at the corresponding normal pressure
 - current reference gas (for groups H and E):
 - G20 100% CH4 → used for assessing most of risks apart from extreme variations in characteristics of gases the appliance has been designed for
 - H_2 presence may impact risks assessed with G20 \Rightarrow need for a 2nd reference gas
 - 2nd ref. gas: CH₄ with max. H₂ concentration

But what about nominal settings? Specific for each ref. gas or 1 setting for both?

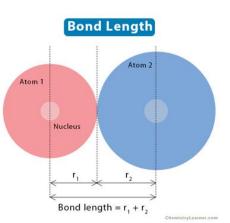
Risks introduced by H₂NG supply

- An enumeration of risks introduced by H₂NG supply.
- Starting from the properties differences between H₂ and CH₄.
- Risks related to
 - safety [S] ;
 - performance [P] ;
 - fitness for purpose [F].
- To be linked to table of **GAR essential requirements**
- and the findings of WP3 testing for 20% H₂NG.

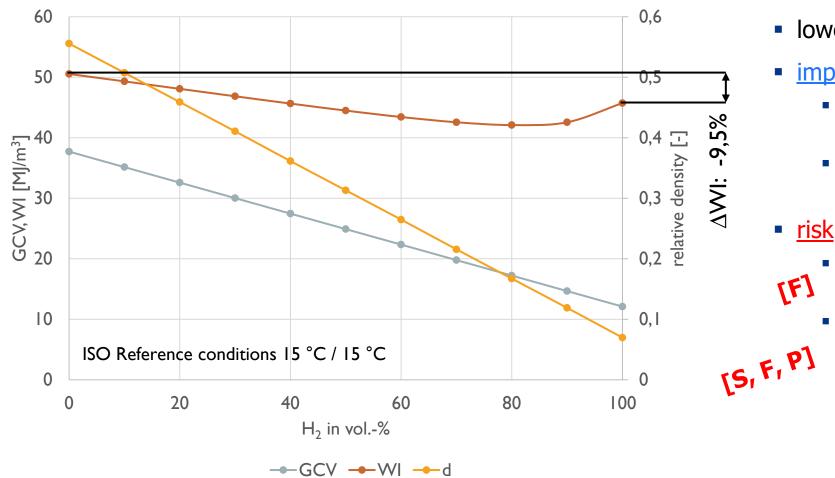
Properties H₂ vs. CH₄

Property	Unit	CH ₄	H ₂
Atomic radius	Å	H 0,25 C 0,70	H 0,25
Bond length	Å	1,09 (C-H bond)	0,74
Gross Calorific Value	MJ/m ³	37,78	12,1
Net Calorific Value	MJ/m ³	34,02	10,2
Relative density	-	0,56	0,07
Wobbe index (using GCV)	MJ/m ³	50,72	45,88
Laminar flame speed at $\lambda = 1$	cm/s	38,6	209,8
Adiabatic flame temperature $\lambda = 1$	°C	1.946	2.101
Flammability range in air	vol%	5 - 15	4 - 75
Min. air quantity for complete comb.	m³/m³	9,52	2,38
Min. ignition energy	mJ	0,28	0,02
Auto-ignition temperature	°C	595	560
Dewpoint temperature at $\lambda = 1$	°C	59	72
Explosion pressure (stoichiometric mixture)	bar	8	
Methane number	-	100	0
100 year GWP	x CO ₂	28	11
Other	-	-	pale blue flame

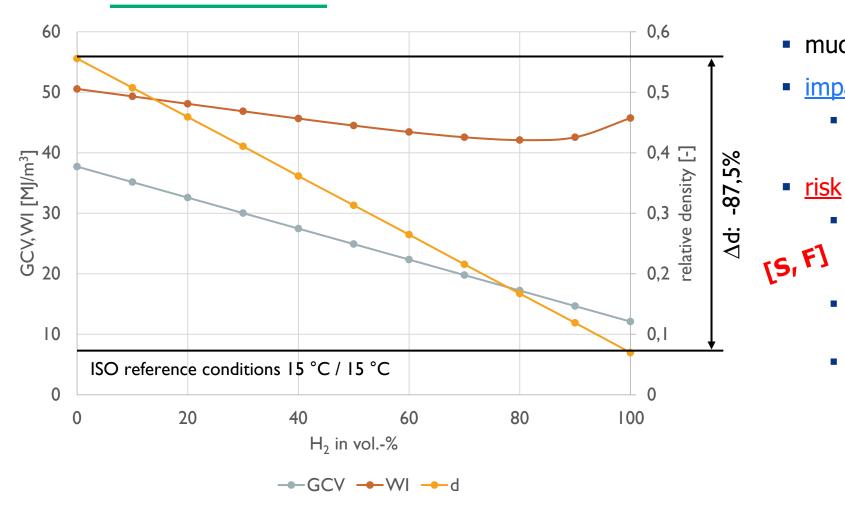
Significantly different properties of H2 introduces **risks** for **appliances not designed for** supply with gases containing **relevant H2 concentrations**!


15/15°C and 1013,25 mbar

Impact + risk: atomic radius & bond length


- atomic radius: H 0,25 vs. C 0,70 Å
- bond length: 0,74 vs. 1,09 Å (of 1 C-H bond, but CH₄ forms a tetrahedron)
- impact
 - H₂ is much smaller molecule
- risk (cf. THyGA D3.7 on tightness testing)
 - unburnt gas leakage: CH₄ tight ⇒ H₂ tight and at low pressures, the potential permeation of gas through the material can be neglected
 - unburnt gas leakage: higher flow rate through a hole \rightarrow however, when gas flow is regular and
- [5]

smooth, essentially at low pressures, the difference between leakage rates in methane and hydrogen decreases to about $1,2 \Rightarrow$ max. leakage rates to be evaluated in view of avoiding dangerous accumulation of unburned gas

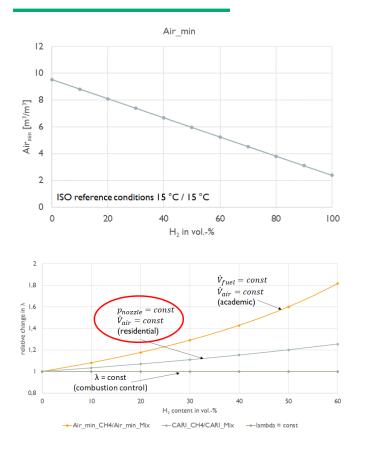

Impact + risk: Wobbe index

- Iower Wobbe index
- impact
 - Iower heat output under same conditions
 - H₂NG with varying H₂ % : widens local WI range
 - insufficient heat output $(\rightarrow unfit for purpose)$
 - H₂NG with varying H₂ concentrations: may
 - complicate/compromise onsite adjustment

Impact + risk: relative density

much lower relative density

impact


 stratification/separation of gases in standstill conditions

risk

- startup with high H₂ concentrations (e.g. due to vertical pipework)
- any risk specific to C₁₁ appliances ? [?]
- no risk for delayed ignition as *limited time prevents* stratification? [?]

Impact + risk: min. air requirement

- significantly lower min. air requirement for complete combustion: 2,38 vs. 9,52 m³/m³
- impact
 - λ increase (without combustion control)
- risk

) flame lift/instability \Rightarrow CO increase or safety shutdown

[P] lower efficiency

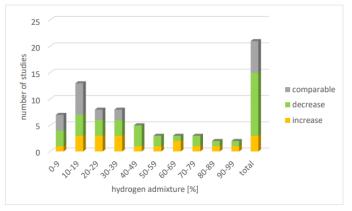
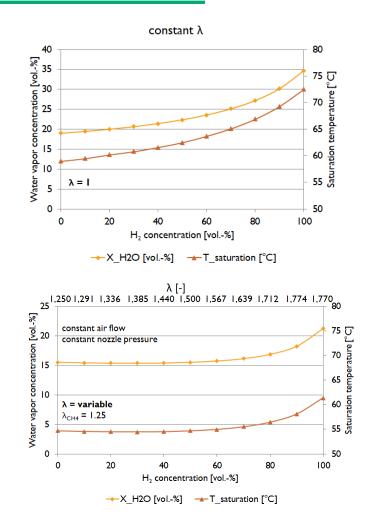
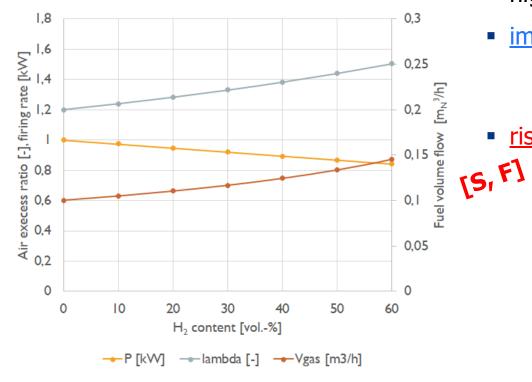



Figure 3-7 Overview of CO emission results in reported literature


Impact + risk: dewpoint temperature

- higher dewpoint temperature
- impact
 - condensation at higher temperature with constant λ
- risk
- (P,F) appliances with combustion control: condensation at places in appliances/combustion products evacuation not designed for condensation
 - condensation with higher water circuit temperatures for appliances with combustion control ⇒ higher seasonal efficiency

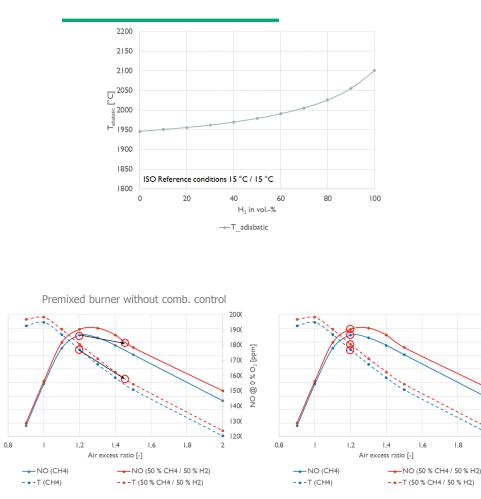
Impact + risk: fuel volume flow

- higher fuel volume flow
- impact

risk

- higher fuel volume flow + same air flow = higher combustion products flow
- **inappropriate TTB position** on B_{11BS} appliances
 - any further risk on inappropriate combustion products evacuation? [?]

Impact + risk: combustion products temp.


- lower combustion products temperature due to lower heat output and, for appliances without combustion control, higher λ
- impact
 - lower combustion products temperature \Rightarrow reduced natural draught

Still to be checked on consistency with THyGA test results.

- <u>risk</u>
- [5, F] condensation at points not designed for condensation
 - F] inappropriate combustion products evacuations for B11/C11 appliances
 - <u>comment</u>
 - lower combustion products temperature may be (partially) neutralized by higher flame temperature

Impact + risk: flame temp.

- higher flame temperature
- impact
 - thermal NO_x formation increase
 - higher surrounding surface temperature
 - higher combustion product temperature
- risk

1800

1700

1600

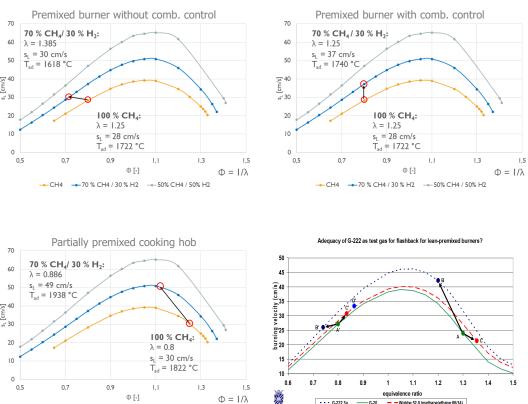
1500

1400

1300

1200

- **(P)** NO_x emissions exceeding limit values
- F1 material detoriation


<u>comment</u>

• NO_x emission increase may be neutralized by λ increase on appliances without burner control (cf. see concerned slide)

NO @ 0 % O₂ [ppm]

Impact + risk: flame speed

- faster propagation of flame front ⇒ disturbed equilibrium between flame speed and gas flow speed
- risk
- [S, F] [S, F] •
- light-back for partially premixed appliances and appliances with combustion control
- J Material deterioration

comment

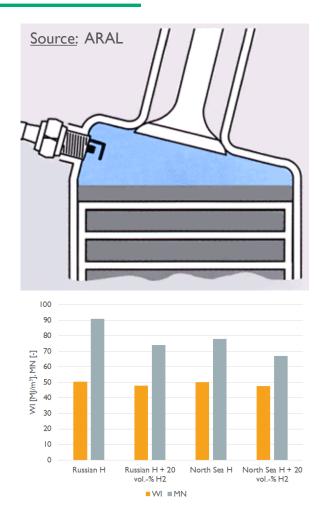
 for appliances equipped with full-premixed burners it seems more appropriate to use gases containing higher hydrocarbons to asses the light-back risk (cf. thoughts on test gases)

Impact + risk: carbon content

- zero carbon content
- impact
 - less CO and CO₂
- risk
 - none
- comment
 - CO may increase due to flame lift/instability caused by an increasing λ (see concerned slide)

Impact + risk: flame colour

- pale blue flame
- impact
 - nearly invisible in daylight
- risk
- [5, F]
 - appliances without flame safety device: flame status not visible for user no flame detection by optical flame safety device (cf. fitness for purpose) [F] •
 - unsatisfactory flame pattern for decorative fuel effect appliances (cf. fitness for purpose) [F] •


Impact + risk: explosion violence

- higher explosion violence
- impact
 - higher explosion violence → higher forces on walls of `closed' spaces
- risk
- **appliance's integrity** and **user injury** due to **ignition** of **accumulated unburned gas** \rightarrow e.g. **delayed ignition** or any inappropriate evacuation after burner stop

Test	results:											
	Boiler setting					delayed ignition time [s]						
Tes t No.	Gas	CO2 [%] O2 [%] Max-Min	CO DAF [ppm] Max- Min	Test gas	CO2 [%] O2 [%] Max-Min	CO DAF [ppm] Max-Min	1	2	3	4	5	6
1	G20	CO2: 8,7-8,4 O2: 5,4-5,9	CO: 155-8	G20	CO2: 8,7-8,4 O2: 5,4-5,9	CO: 155-8						
2	G20	CO2: 8,7-8,4 O2: 5,4-5,9	CO: 155-8	G20 +30%H2	CO2: 6,9-6,6 O2: 7,0-8,0	CO: 29-2						
3	G20 +30%H2	CO2: 8,7-8,4 O2: 3,8-4,4	CO: 192-6	G20 +30%H2	CO2: 8,6-8,4 O2: 4,2-5,1	CO: 192-6						
4	G20 +30%H2	CO2: 8,7-8,4 O2: 3,8-4,4	CO: 192-6	G20	CO2: 10,6-10,4 O2: 2,3-3,0	CO: 678-27						
		smooth igr	nition			Note:						
		small deto					n external timer has been connected between the urner control and the igniter in order to delay the					
		noisy deto			Ŭ	ignition of the gas/air mixture inside the combustion chamber from 1s to Ignition Safety Tim					v Timo	
	>			ion without damages combustion chamber from 1s to Ignition Sat n - hazard for user [TSA].				moaret	ynne			
		No ignition	ı									

Impact + risk: methane number

- methane number = 0!
- impact
 - H₂NG: lower methane number
- risk
- [S, F] knocking of reciprocating engines

Impact + risk: other

- chemical impact on materials: sufficient input
- flammability range: wide range \rightarrow rich mixtures [?]
- flame radiation & emissivity: lower emissivity [?]
- flame length
- ionization current: sufficient input
- GCV/NCV ratio [?]
- unburnt H₂ emissions: sufficient input
- pressure drop [?]
- ventilation: installation related

Impact + risk: literature

D2.3 - Impact of hydrogen admixture on combustion processes – part II: practice

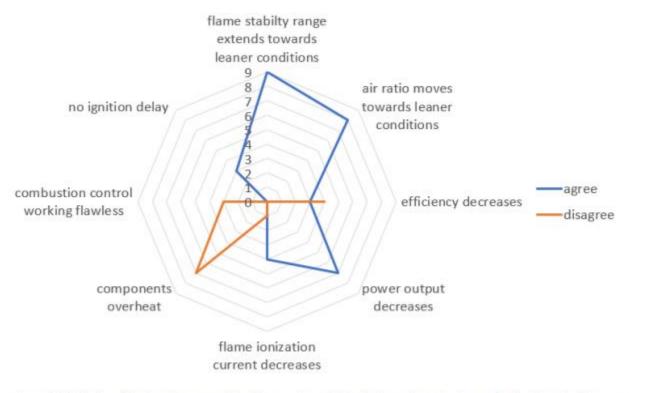


Figure 3-5 Collection of statements on operational issues when admixing hydrogen to various types of natural gas fired burners

Link with GAR essential requirements

	GAR	RISK	THyGA
	Essential requirement	DUE TO H2NG SUPPLY	outcome of tests/analyses for 20% H2NG
N°	Requirement		
1	GENERAL REQUIREMENTS		
	Appliances shall be so designed and constructed as to operate safely and present no danger to persons, domestic animals or property, when normally used.		
	Fittings shall be so designed and constructed as to fulfil correctly their intended purpose when incorporated into an appliance or assembled to constitute an appliance.		ED FOR
	The manufacturer is under an obligation to analyse the risks in order to identify those which apply to his appliance or fitting. He shall then design and construct it taking into account its risk assessment.		ABLE DA.3
	In selecting the most appropriate solutions, the manufacturer shall apply the principles set out below, in the following order:	E COM	ABLL
	(a) eliminate or reduce risks as far as possible (inherently safe design and construction);		
	(b) take the necessary protection measures in relation to risks that cannot be eliminated;		
	(c) inform users of the residual risks due to any shortcomings of the protection measures adopted and indicate whether any particular precautions are required.		
	When designing and constructing the appliance, and when drafting the instructions, the manufacturer shall envisage not only the intended use of the appliance, but also the reasonably foreseeable uses.		
1.5	All appliances shall:		
	(a) be accompanied by instructions for installation intended for the installer;		
	(b) be accompanied by instructions for use and servicing, intended for the user;		
	(c) bear appropriate warning notices, which shall also appear on the packaging.		
1.6.1	The instructions		

END