

Testing Hydrogen admixture for Gas Applications

THyGA WP4

Workshop "H2NG supply to residential and commercial appliances – standardization and certification" 31/03/2021

Meeting	Workshop WP4
Meeting date & location	31 st of March 2021 (Webco)
Document ID	THY_WP4_007_WP4 Workshop main take-aways_02
Author & Company	Kris De Wit, Gas.be

Attendees					
Name	Company	Name	Company		
Benoit Charlot	AFG	Nicola Guardigli	Electrolux		
Ted Williams	AGA	Jacques Dubost	ENGIE		
Wilfried Linke	BDH	Patrick Milin	ENGIE		
Andrea Manini	BDR Thermea Group	Stéphane Carpentier	ENGIE		
Sebastiano Temperato	BDR Thermea Group	Kris De Wit	Gas.Be		
Michel Oldenhof	Bosch	Alexandra Kostereva	GERG		
Nourredine Mostefaoui	CETIAT	Robert Judd	GERG		
Jean Schweitzer	DGC	Jean-Baptiste Perrin-Terrin	GERG		
Hiltrud Schülken	DVGW	Jörg Leicher	GWI		
Werner Kinnen	DVGW-CERT	Mark Crowther	Kiwa		
Dennis Klein	DVGW-CERT	Mindert van Rij	Kiwa		
Krishnaveni Krishnaramanujam	DVGW-EBI	Howard Levinsky	RUG		
Regis Anghilante	DVGW-EBI	Martin Bergemann	Siemens		
Irma Rustemi	Electrolux	Christoph Schreckenberg	Vaillant		
Fabio Spano	Electrolux	Ingo Seliger	Viessmann		
Maurizio Beghi	Electrolux	Dave Lander	Dave Lander Consulting		

The THyGA project has received funding from the Fuel Cells and Hydrogen Joint Undertaking under grant agreement No. 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

1 Context and goals of the workshop

A key issue in a transition to common use of relevant shares of hydrogen in natural gas supply is safe operation and reliable functioning of end-use appliances. The lifetime of these end-use appliances is considerable and so new gas appliances put on the market should ideally be compatible with these admixtures as soon as possible. Therefore, appropriate adaptation of certification requirements and related standardization is of utmost importance.

Different initiatives and first experiences exist. In the framework of its WP4 on standardization and certification the THyGA project team decided to organize a workshop with a number of invited experts in view of getting better insight into these existing initiatives and experiences and answers on a number of open questions.

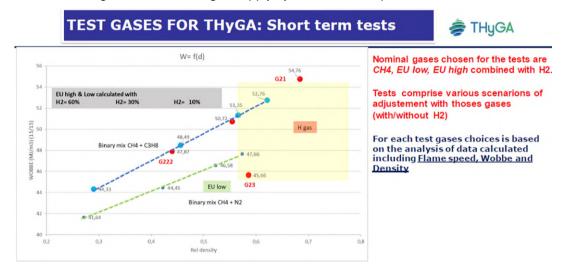
On the 31st of March, the Workshop brought together **32** standardisation experts and manufacturers to discuss and share information on the current certification and standardisation frameworks, in the EU and the USA.

	impact of H2 addition	Kris De Wit		Electrolux	Maurizio Beghi
14h00	Status of standardization framework			Questions	
	Pre-normative project GERG Robert Judd / Jean Schweitzer		16h00	Other experience with testing and certific	cation with H ₂ NG
	CEN/TC 238	Nourreddine Mostefaoui		KIWA – UK's experience & approach	Mark Crowther
	CEN/TC 109 WG1 AhG H ₂	Michel Oldenhof		American Gas Association – US' experience & approach	Ted Williams
	CEN/TC58	Martin Bergemann		Questions	
	Questions		16h30	Discussion & conclusions	
15h00	BREAK		17h00	END	

The following notes are the main take-aways identified by the project.

The THyGA project team thanks the experts for their participation, valuable contributions, and acceptance to share their views publicly with all interested stakeholders.

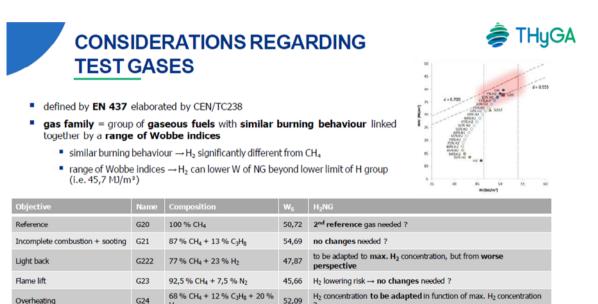
Please note that these exchanges reflect thoughts and leads of the guests on the topic of H2NG and not necessarily official positions of the concerned organizations.


2 THyGA project (P. Milin – Engie, J. Schweitzer – DGC, K. De Wit – Gas.be)

Main goals of the project

• Enable wide adoption of hydrogen in natural gas blends by closing knowledge gaps, identifying adaptation of standards and clarifying the acceptable H2 concentration.

- Test program developed to define the influence of H2 mixed in NG on safety, performances and operation of existing types of residential and commercial appliances.
- Short- and long-term combustion tests using test gases based on Wobbe index of natural gas of type H distributed in EU (47,63 ≤ W_s ≤ 52,78 MJ/m³) and H2 concentrations up to 60%
- Some leakage tests on indoor gas supply systems are also planned.


Observations:

• Flash-back could occur after longer burning time → test procedure in current standards may have to be reconsidered → to be confirmed.

- Standardization: new test gases to be defined, but also product standards may have to be updated on tests, test conditions and requirements.
- EN437 → gas family = group of gaseous fuels with similar burning behaviour linked together by a range of Wobbe indices → burning behaviour with H2 significantly different than with CH4 + H2 because blends can lower the initial Wobbe index of NG beyond lower limit of H group (i.e. 45,7 MJ/m³).
- Existing appliances did not have to be designed for H2NG supply → H2NG supply cannot be considered as 'normal use' → no product liability by manufacturer.
- Appropriate H2 concentration ASAP to be adopted in quality specifications for distributed gases (cf. annex II of GAR) for which new appliances need to be designed ?
- The widespread current practice of on-site adjustment of gas appliances may become inappropriate for varying H2 concentrations.

3 Pre-normative project GERG/CEN (R. Judd – GERG, J. Schweitzer - DGC)

any new limit gas to cover any new or impacted risk ?

Scope of the project

- H2NG gap analysis covering different topics amongst which residential and commercial enduse including draught burners and NGV → topic leader: DGC.
- Tasks: perform detailed knowledge surveys, understand state of the art, understand gaps in knowledge, develop recommendations for pre-normative actions in order to enable the injection of H2 in the grid and development of 100% H2 dedicated grids.
- Planning: project started in Autumn 2020 \rightarrow final report 30th of Nov 2021

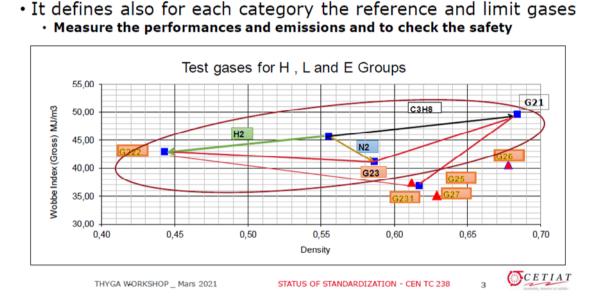
Issues to be addressed for residential and commercial end-use (focus on 20% H2 in NG grids and 100% H2 in dedicated grids):

- Safe operation of the end use equipment, including testing vs service conditions, certification and regulatory.
- Environmental impact on end used equipment, including noise, comfort.
- Energy efficiency of the end used equipment.
- Overall performances of the end use equipment for the service it is designed for.

There clearly are synergies between the GERG project, the THyGA project and ongoing CEN TCs' work.

OBJECTIVES · to establish a shortlist of potential priority subject areas for PNR actions to reduce barriers to injection of hydrogen in the natural gas grid. **Priority 8** • to develop a status review on the use of H2 and H2NG blends for End Use equipment above 20% H2 (including Rate of Change) including the state of the art and gaps for mitigation in a future PNR work programme to support the implementation of H2 and H2NG end-use products by reviewing existing standards, to clarify the need for amendments and the need for new standardisation End use equipment ISSUES TO BE ADDRESSED Safe operation of the end use equipment, including testing vs service conditions, Consequences for End use certification and regulatory equipment with H2 in NG · Environmental impact on end used equipment, including noise, comfort Energy efficiency of the end used equipment Partners Overall performances of the end use equipment for the service it is designed for. DGC (lead), DNVGL, DBI, SCOPE Engie, KIWA Domestic and commercial uses of gas including forced draught burners and NGVs (but not NGV tanks covered by biomethane study). H & L gases. EXPECTED OUTCOMES AND BENEFITS Details on the sensitivity of each segment and conclusion for each segment (Updated relevant information filling the knowledge gaps, including the bottlenecks to be addressed in order to manage safely the impact of H2 injection in End Use equipment) Limitation to the conclusion given Details on the regulations & standardisation that apply for each of the segments Recommendations of action to cover the areas where more work shall be done Conclusion about the standardization (Work Programme proposal for PNR actions including numerical simulations, research work, experimental testing and investigation for mitigating the impact of H2 injection in gas uses in End Use equipment)

THyGA Project - 5/14 THyGA project 2021 – all rights reserved



4 Test gases standard EN 437 – CEN/TC238 (N. Mostefaoui - CETIAT)

Work regarding H2 in parallel with TC 109 activities.

The activities related to H2NG and H2 have to be launched ASAP after the revised 2021 version of EN 437 is published.

The standard already contains test gases for the use of town gas: they contain between 43 and 59 % of H2, but also between 21 and 32 % of N2. Town gas is still in use in some places in Denmark, Germany, Italy and Sweden.

EN 437

Impact of hydrogen on test gases

- A new revision of NF 437 in 2 steps was adopted by the plenary CEN TC 238 in 2019 and 2020
- Step 1 : mixtures of natural gases and hydrogen to launched as soon as version 2021 is published • The work of CEN TC 238 is done in parallel with CEN TC 109
- Step 2 : hydrogen to launched as soon as version 2021 is published
- Work progress will presented by CEN TC 109

THYGA WORKSHOP __ Mars 2021 STATUS OF STANDARDIZATION - CEN TC 238 7

5 Product standards on central heating boilers – CEN/TC109 WG1 AhG H2 (M. Oldenhof - BOSCH)

The presentation focusses on what has to be changed in terms of tests and corresponding limit gases.

Proposal to introduce:

- new appliance categories (e.g. I2N+, I2H+) for appliances accepting up to 20% H2
- a 4th gas family in EN437 for 100% H2

A draft amendment EN 15502-2-1 for H2NG appliances already exists.

Proposal for marking and limit gases.

Draft amendment EN15502-2-1 for H2NG appliances:

Main adaptations:

- Marking of H2NG appliance with a "Y" following by a number to indicate the %H2 in the gas:
 E.g. 2EY20 for 80% CH4 and 20% H2.
- Amendment written for max. 20% H2 volume in the distribution gas, which means a range of 0-20% H2 is covered.
- Nominal heat input = heat input with reference gas (0% H2).
 Max ± 5%/ 500W heat input tolerance allowed.
- Reduced heat input = heat input with hydrogen blend (20% H2)
 No max. heat input tolerance.
- Risk analysis to be extended for materials in contact with hydrogen.
- Delayed ignition (to be done with NG&H2NG).
- Combustion measurements/calc. based on O2 instead of CO2.
- Light back to be done with higher %H2 test gas (see next page).
- (Mal)-adjustment of the boiler taking into account adjustment at both 0% and 20% H2.

1-22

TT-MYTMG16vv J 20140-23 O Bosh Thermotedniek B.V. 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rig

Limit gases for H2NG appliances for fully pre-mix appliances:

-2 proposals:

<u>"classic" proposal</u> in line with current EN437, but for light back gas for 2EY20/2HY20 the test gas G22 is chosen (35% H2).

Gas catego (EN437)	Gas category without H2 Gas category with Hydrogen blend (new, future adaptation in EN437) (EN437)						
Gas category	Reference gas	Gas category	Reference gas	Declared heat input for 20% in the distribution gas	Incomplete combustion gas	Light Back gas	Flame lift limitgas
2 _E	G20	2 _{EY20}	G20	G20 _{Y20}	G21	G22	G231
2 _H	G20	2 HY20	G20	G20y20	G21	G22	G23

- <u>Alternative</u> for 20% H2 in the distribution gas a lambda variation of +/- 10% can be chosen (in line with the PAS4444 for 100% H2). A similar approach can be done for higher % H2 in the gas.

Gas catego (EN437)	ry without H2	Gas category with Hydrogen blend (new, future adaptation in EN437)					
Gas category	Reference gas	Gas category	Refer ence gas	Declared heat input for 20% in the distribution gas	Incomplete combustion gas	Light Back gas	Flame lift limitgas
2 _E	G20	2 EV20	G20	G20 _{y20}	0,9*λ	0,9*λ	1,1*λ
2.	G20	2 _{HV20}	G20	G20 _{y20}	0,9*λ	0,9*λ	1,1*λ

TT-RH/ENG1-Dev | 2021-03-23

BOSCH

BOSCH

6 Product standards on safety and control devices – CEN/TC58 - AFECOR (M. Bergemann - SIEMENS)

Main points:

- For safety and controls devices, a lot of parameters are relevant and need to be considered.
- 4 project groups within CEN/TC58: Leakage rates and breather holes, Combustion safety, Sensors and Electronics, Materials.
 - Leak-tightness: no significant differences with NG.
 - Breather holes: in case of diaphragm failure higher flow rates through breather holes 0 have been measured for H2 \rightarrow risk assessment needed.
 - Combustion safety: avoid unburned gas accumulation, procedures needed for parts 0 replacement.
 - Sensors and electronics: limits of ionization sensors, difference in spectral range for 0 optical sensors, safety times to be adapted, moisture.
 - Materials: H2 embrittlement, operating temperature classes to be introduced 0

CEN/TC 58 Hydrogen Activities Project Group 2: Combustion Safety

Assessment parameters

- High temperature exposure of parts
- NOx emissions

To be investigated

- Accumulation of leakage rates, avoid ATEX zones
- Avoid deflagration
- **Purging procedure**
- Procedure for components only temporarily supplied with hydrogen
- Procedure for part replacement (filters, valves, actuators)
- Detection of incomplete combustion, hydrogen emission measurement
- · Factors compromising product lifetime

CEN/TC 58 Hydrogen Activities Project Group 3: Sensors and Electronics

Assessment parameters

- Flame detection signal strength
- Safety times of burner controls

To be investigated

- Focus on EN 298 (burner controls), EN 12067-2 (electronic fuel/air ratio controls) and EN 16340 (combustion product sensors)
- What are the limits of ionization sensors for increasing hydrogen content, can the method still be used for adaptive systems?
- Will the difference of the spectral range of natural gas and hydrogen flames cause any problems for optical sensors?
- Higher ignition energy needed for hydrogen, flame detection time may need to be adjusted
- Moisture becomes a factor to be considered especially for combustion product sensors

Martin Bergemann

5

7 Gas Appliances Regulation (EU) 2016/426 (GAR) (M. van Rij - KIWA)

Main points.

- Risk analysis of H2NG use by gas appliances: risks on fan location, ionization current, delayed ignition, surface temperature of the burner and its surroundings.
- Proposal to indicate the Wobbe index bandwidth of natural gas (without hydrogen) an appliance is designed for in warnings, instructions and design documentation with a Z value Zzz (e.g. Z20 = appliance designed for a Wobbe index bandwidth of 2,0 MJ/m³)
- Proposal to indicate the max. H2 concentration an appliance is designed for in warnings, instructions and design documentation with a Y value Yyy (e.g. Y20 = appliance designed for a max. H2 concentration of 20 vol%)
- On-site adjustment becomes more critical if current way of doing is not adapted → proposal to test with adjustments for the 2 most extreme reasonably foreseeable adjustments using the actual distribution gas.
- Use of O2 instead of CO2 concentration in flue gases for on-site adjustment.
- Safety margins between test gases and distributed gases to be evaluated → current test gases with H2 do consider distributed gases not containing H2.

Conclusion:

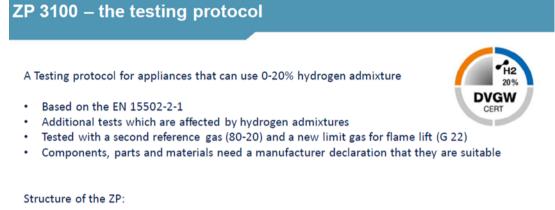
- The instructions must be clear on the gasses the appliance is designed for (The Y and the Z are a option for this).
- > The manufacturer must provide a risk analysis (RA) using the gasses the appliance is designed for.
- For H2NG evidence must be given that the ER's of the GAR and the risks form the RA are covered to the same extend as for NG-only appliances.
- □ Key issues indicated by the ER's: <u>On site adjustment of the appliance</u>, ignition and combustion stability, Materials suitable for H2.
- □ Some key issues form the RA: Fan location, Delayed ignition, lonization current, Surface temperatures of the burner and its surroundings.

kiwa

> Introduction of H2NG is supported if:

- □ The actual accurate information on the Wobbe index of the NG-only gas and the H2 content are available on a city by city basis to the public and the installers. (This is not the case today !)
- □ This may require modifications of the National legislation on DSO and TSO in each member state that considers introducing H2NG.

 If national legislation is in place to provide this information, the adjustment instructions of the manufacturer may assume that this information is available to the installer and use this information as the basis for the installation instructions. (Today it is not reasonable to assume that this information is available for the installer)



8 Testing prescriptions in Germany (D. Klein – DVGW)

Increasing demand for approval with H2 in NG up to 20% \rightarrow test protocol and requirements needed until standards are available $\rightarrow \underline{\text{DVGW ZP 3100}}$ is an additional testing protocol for gas-fired central heating boilers using H2NG up to 20 vol% H2

It uses a 2nd reference gas besides G20 (i.e. 100% CH4): 80% CH4 + 20% H2 + new limit gas for flash-back: G22 (i.e. 65% CH4 + 35% H2).

Clause in EN 15502-2-1	Requirement	Test condition	Comment	Test Gas

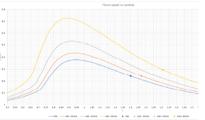
ZP 3100 – Basis for standardization

- The Testing protocol was developed by german experts of testing laboratories, manufacturers and notified bodies
- It was used to support the amendment for hydrogen of EN 15502-2-1 in CEN/TC 109/WG 1 AHG hydrogen
- The new test gases are also used to support the revision of EN 437 in CEN/TC 238/WG 1
- > ZP 3100 is published and available for free under:

https://www.dvgw-cert.com/de/produkte-gas/pruefgrundlagen/zertifizierungsprogramm-zp.html

9 Manufacturers' views and experiences – part 1 (S. Temperato – BDR Thermea)

The group already disposes of a certified full H2 boiler. 100% H2 appliances should prevent:


- any explosion outside the combustion chamber because of gas leakage ;
- any ignition of the gas/air mixture before the burner;
- any flash-back also in case a wrong lambda is used.

H2NG blends:

- Not new \rightarrow town gas used since many years and still today in several countries.
- Components often are already approved for use of town gases.
- 20% H2 recommended as maximum mainly due to possible variation of the H2 concentration.
- Main risks:
 - o wrong onsite adjustment of burner settings
 - o delayed ignition
 - heat output & comfort reduction (about 5%)
- λ most important parameter to consider for evaluating the operating margin.
- Some auto-adaptive combustion controls based on ionization current don't seem to react to the Wobbe index change in case of H2 presence [®] could be positive to avoid onsite adjustment.
- Boilers with very high modulation ratio at min. power: high burner temperature and higher risk on flash-back
- Approval for existing appliances on the market remains an open point [®] liability to be defined
 → min. manufacturer's declaration + safety instructions.

BDR Thermea experience: NG+H2 blend

 Lambda is the most important parameter to consider for the evaluation of the operating margin
 Flashback is never an issue when the boiler is set to operate with NG. Also at 60%H2 the flame speed remains low because of the reduction of the Ws and the increase of the lambda.
 Flashback could be an issue, increasing the %H2, only if it associated to a reduction of lambda.

- Some Electronic Combustion controls based on ionisation current don't seem to react to the Ws change in case of presence of H2 in the blend. This behaviour could be positive because it avoids any risk of adjustment in the field by service people and the boiler operates always in safe conditions.
- Boilers with very high modulation ratio operating at min power could meet problems: high burner temperature and flashback could happen more likely.

BDR THERMEA GROUP

BDR Thermea experience: NG+H2 blend

Some considerations:

- BDRT/BAXI SpA is directly participating on several Working Groups connected with H2: THYGA, Hy4heat, TC109 ad hoc WG for H2, Assotermica Green Gas Group, UNI mirror Group, Notified Body.
- The risks associated to the use of the NG+H2 blends, as described in the previous slides, are not in our opinion an obstacle for the introduction of H2 in the NG grid.
- Use of a limit gas, to verify the operating margin for the flashback (e.g. G22 used for max 20%H2 blend), is consistent with the
 approach used today on EN15502 standards.
- Ecodesign / Energy labelling should not be impacted by the NG+H2 blend adoption for limited H2 content (up to 20%). Same approach should be used also for other applicable legislations.

10 Manufacturers' views and experiences – part 2 (M. Beghi – Electrolux)

Main points

- Product certification is not possible without modification also in the legislation (cf. GAR and ECO-design/energy labelling) for gas appliances.
- It is important to define and evaluate the meaning and content of "H2Ready" and "H2NG compatible" product ranges to achieve tangible CO2 emission reductions.
- Different scenarios in relation to how appliances would need to be adapted or retrofitted:
 - o simple factory pre-setting
 - o on-site adjustment
 - o H2 Ready with conversion kit, part replacement
 - o specific design
- Could different max. H2 concentrations in countries create barriers?
- Importance of variations of H2 concentration [®] to be taken in account when defining test conditions.
- What about H2 quality considering different ways production (e.g. steam reforming, electrolysis)?
- How to deal with the existing appliances on the market

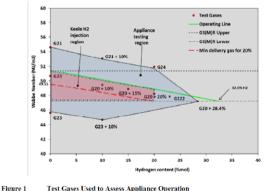
Technical items

- Hydrogen blends:
 - how much? 2%, 5%, 10%, 20%, ...
 - Could different national approaches be a barrier with hydrogen blends % variations country by country?
 - Percentage variability over time or compatibility with NG100%? Limit gas must include this variability
 - Are all H2 the same (CH4 reforming vs hydrolisys)?
- · Appliances already on the market: which strategy for them?
 - Support sells for (x%) Hydrogen ready appliances in order to prepare transition (labeling?)
 - Retrofit kit? Is it to be defined a backwards time limit with incentives?
- CEN TC 49: showed interest in WP8 (end uses) for the pre-normative requirements «PNR H2NG/H2 IN NG SYSTEMS» lead by CEN TC 234; no specific activity running so far

Other items

 \mathbf{I}

- The need for Certification, Homologation or backward compatibility could drive the business model for adaptation: uncertaintanty about H2 introduction and impacts could lead consumer towards electric appliances
- · Supplier competence and component readiness?
 - Alignment with potential impacts and development schedules
 - Component readiness for H2NG vs Town Gas?
- Testing activities to be updated:
 - unburnt H2 \rightarrow any limit?
 - unburnt HCN → any limit?
 - NOx \rightarrow any limit?
 - Gas leakage tests: criteria for limit flow Rates and test pressure; test with air comparison
 - Shall test instruments and requirements be adapted to H2 flows?



11 <u>HyDeploy</u> project (M. Crowther – KIWA Gastec)

As demonstration project of hydrogen in homes, HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now.

- It is providing evidence on how customers don't have to change their cooking or heating appliances to take the blend.
- Laboratory tests carried out before starting live trial on a closed network at the Keele site → used limit gas for flash-back composed of 71,6% CH4 and 28,4% H2 resulting in a Wobbe index equal to the lower Wobbe index limit of the GSMR.
- Safety issues limited to the functioning of oxygen depletion sensors (ODS) and some minor issues with flame detectors based on the ionization current → ODS is a safety device which is used on some gas appliances with open fires installed in living areas (e.g. decorative fuel effect appliances and type A water heaters) → further investigation is recommended.
- Majority of test data indicates no deterioration in public safety when using 20% H2 in NG.

Safe domestic and commercial 20%v/v hydrogen use

4 ©Kiwa Ltd

use

Safe domestic and commercial 20%v/v hydrogen

Test	General Test Result	Variation Within Test Result	Comments
Assessment CO Production	No change or a reduction in CO production with increasing hydrogen concentration compared to that of natural gas: compliance demonstrated arainst BS 7967/2015	Appliances displayed similar behavious albeit at different absolute levels due to predicted differences in combustion style [2]	Deviation from specification is not significant except in extreme conditions.
Combustion Behaviour including ignition efficiency, cross lighting and assessment of light back.	Accurate BS (760-7012) No evidence of deterioration in combustion performance, no ignifien failings and no occurrence of light back ¹⁰¹	None	No significant change in appliance performance.
Combustion behaviour (100% Hydrogen)	Light back at concentrations greater than 80 % mol/mol hydrogen. Below 80 % mol/mol, no ignition issues or occurrences of flame fishure [P]	At > 80% met/mel hydrogen ignition istnes observed	Suggests an upper functional limit of 80% mol / mol hydrogen is present.
Function of Dxygen Depletion Sensor (ODS)	One of four live flame effect fires showed a compliance against ODS specification with Q20 but failed the safety criteria when hydrogen was added.	The fire with oxy plot ODS trialfed against the various test games failed to provide ODS function with sofficient safety factor to be acceptable. Further studies into ODS design and function is recommended.	Inset live flame effect fires contain an oxygen depletion sensor (ODS) to guard against fine blockage. BS EN 7977.1 requires that the ODS shuts off the gas supply before the CO concentration reaches 200 ppm in the toit chamber
Flame Failure Devices (Ionisation Probe)	Up to 80 % motional hydrogen the measured ionisation current in the Worcester Bosch boiler showed a reduction in sonisation current with increasing hydrogen concentration. No false flame out events occurred.	Ionization excess is used as a control mechanism by a mmber of boiler manufactures. None of these appliance types are present on the Q3 metwork at Keele University and therefore this aspect has not been considered as part of the HyDeploy test programme.	It is a well-established consensus that there is limited ionisation current in hydrogen flames: the trials readfirmed this consensus.
Energy Efficiency	Minimal effect of hydrogen on the efficiency of the appliances. ^[7]		The Wobbe Number of the delivered gas was kept within GSMR limit.

6 ©Kiwa Ltd

Kiwa Gastec

More recent work indicates that the issue with the ODS, whilst real, is statistically extremely unlikely to occur. Most CO events historically occurred with soot falls, birds and mal-functioning boilers. Lined flues, terminals and condensing boilers have effectively addressed this.

Kiwa Gastec

kiwa

12 Status in USA (T. Williams – AGA)

Blends using NG as a carrier gas for delivering H2: 5 to 15% H2 appears to be viable without significantly increasing risks \rightarrow report: <u>NREL – Blending H2 into NG pipeline networks - 2013</u>

AGA, AHRI and CSA group did exploratory testing of residential NG appliances operability on methane/H2 mixtures \rightarrow final reports soon available:

• Stability issue of pilot ignition observed in 1 space heater.

Issues raised for AGA consideration:

- Influence of "real natural gas" in NG/H2 blends
- Focus on diffusion flame burner appliances \rightarrow certification testing vs. field performance
- Potential standards actions → test gas in Z21/Z83-CSA standards

American Gas American Gas Association	Biending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Malana, O. Antora, and M. Penev	Natural Gas/Hydrogen Blends of 5% to 15% Hydrogen "appears to be viable without significantly increasing risks…" Blends Using Natural Gas as a Carrier Gas for Delivering Hydrogen.
	NGL is a failure dation of 6-101. Spanner of of Energy (Phor of Energy Phores and a set of the set	https <u>://w</u> ww. <u>nrel.gov/docs/fy13osti/51995.pdf</u>)
	• Standards for Safety: Performance on 5% and 15% Hydrogen Blends	Findings NOx _{aF} (ppm) emissions of furnaces
	 No Operability Challenges or Critical Safety Issues Were Identified 	fueled by different gases
American Gas Association	No Carbon Monoxide (CO) or Oxides of Nitrogen (NO _x , including NO ₂) Excursions from Baseline Performance Were Observed	86
	No Effects on Appliance Controls or Leakage Due to Reduced Density and Other Physical Characteristics Were Observed	78 — — — — — — — — — — — — — — — — — — —
	 Excessive Heat Exchanger Temperatures Were Not Observed 	72 CH4 5% H2 15%H2 FURN1 # FURN2 # FURN3 # FURN4
	Stability of Pilot Ignition Was Observed in One Space Heater.	