

THyGA Workshop

December 15th 2021

Testing Hydrogen admixture for Gas Applications

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Agenda

13h30	Welcome, Introduction and rules to the webinar	Alexandra Kostereva / Patrick Milin
13h40-14h25	Experience sharing: GRHYD, Higgs, HyDeploy	Isabelle Alliat Javier Sanchez Lainez Adam Madgett
14h25-14h30	THyGA - Objectives of the project	Patrick Milin
14h30-14h50	THyGA - Theory on the impact of H2 admixture in NG on combustion aspects	Jörg Leicher
14h50-16h15	 THyGA - Interim test results Focus on some specific results (flashback, ionization current, adjustment, etc.) Q/A session between each thematic session GERG PNR project and link with on-going work 	Jean Schweitzer
16h15-16h30	Experience sharing: HyDelta	Julio C. Garcia-Navarro
16h30	THyGA - Next steps and end of the Workshop	Patrick Milin

GRHYD

Isabelle ALLIAT (ENGIE Lab CRIGEN)

GRHYD : a successfull demonstration for the new gas H2NG

Isabelle ALLIAT (ENGIE Lab CRIGEN)

THyGA webinar, June 15, 2021

The GRHYD project Grid management by Hydrogen injection for **Decarbonizing the energies Context and aim**

The 1st Power-to-Gas H2 demonstror in France :

- Part of the French Program 'Investment for the Future' : <u>Hydrogen</u> for a <u>Sustainable</u> City
- Valorize, through the production of H2, renewable overcapacity and promote a new energy in urban areas to decarbonise the networks and uses of natural gas!

 Evaluate in real conditions the new H2NG energy in the usual uses of gas at home and in transport, on technical, environmental, regulatory and societal aspects

Two pilots based on Hydrogen to assess the relevance of H2NG chain for sustainable cities

 GRHYD objective : produce H2 from renewable electricity, inject this H2 into the gas distribution grid and consume the new H2-NG gas locally (heating, cooking, hot water, CHP, and mobility)

A NEW GAS : H2NG

A new kind of gas for homes

A new 100-home district and the boiler of a health center, are supplied with a new type of gas H2-NG. The H2 content fluctuates but doesn't exceed 20% vol.

SUSTAINABLE MOBILITY

A new fuel for urban buses

Through a pre-commercial demonstration, NGV station and 30 urban buses will be adapted to Hythane® fuel (5% and 20% H2 vol)

From feasibility demonstration to commercialisation

The main results of the new gas H2NG demonstration

Good social acceptability among user residents

- A priori favorable experimentation area: a population accustomed to an industrial environment
- An information system combining public meetings with future residents, targeted communications, posters in housing buildings

Feedback from sociological studies carried out with residents (focus group, interviews):

- Confidence in the project partners to manage the industrial safety issue
- Their main concern: impact on the energy bill (neutral in the context of the project)

The demonstration lasted 22 months, and applied the fluctuating H₂ content in gas during the winter 2019-2020

H2NG gas quality

The fluctuating H2 %

- The delivered H2NG fulfilled the DSO requirements in France (L-gas), except:
 - > Content of H2 above 6% in NG
 - Calorific value:
 - ✤ GCV is out of the legal range above 12% H2 in L-gas
 - ✤ <u>i.e.</u> below 12% H2 in L-gas, GCV is in the legal range
- Large fluctuations will lead to the development of the Smart Gas Grid (billing purpose)

Test results on domestic boilers

Tested domestic gas appliances

	In the lab (CETIAT)	On-site (residents)
Domestic boilers	2 new boilers (Saunier, Chappée) 3 old boilers(Frisquet, Chaffoteaux, Saunier) 0, 10, 15, 20, 25 and 30 %vol. H2	3 new boilers (Saunier) 6, 10 and 20 %vol. H2
Cookers and ovens	1 new 1 <u>old</u> 0, 10, 15 and 25 %vol. H2	1 old (6 and 10 %vol. H2) 1 new (6 and 10 %vol. H2) 1 new at 20 %vol. H2

Tests in laboratory

Measures on site

Results in lab and on-site (Saunier boiler)

Conclusions of tests on <u>domestic</u> boilers

✓ <u>These results are specific to the boilers tested, they confirm the literature,</u> <u>but they cannot be directly extrapolated to other boiler models</u>

- ✓ Reduction of the useful power and the heat output
- ✓ Maintain of combustion efficiency and increase of useful efficiency
- \checkmark Reduction of <u>emissions</u> : CO₂, CO and NO_X
- ✓ No problems relating to safety, noise, shutdown, securing, declared during technical inspections on site

For future deployment

- Long-term impact of hydrogen (aging, endurance) is to be verified in future projects
- There is a need for large-scale test campaigns to adapt the standards to the new H2NG gas

On-site test results on the tertiary boilers

The tested tertiairy boilers

- The care center (EPSM of Flandes) has 2 boiler rooms, equipped with:
 - 1 old Guillot boiler
 - 2 recent Viessmann boilers
- The interesting parameters to measure are:
 - The polluant emissions
 - The useful efficiency
 - But it was impossible to measure it
 - The combustion efficiency

The Viessmann boilers show better performances

- Operation with H2NG complies with current regulations
- No dysfunction was observed
- The presence of 20 %vol. H2 in the natural gas decreases :
 - ➤ the CO2 emissions by 12%
 - ➤ the NOx emissions by 57%
 - ➤ the CO emissions by 20%
- Combustion efficiency:
 - Slight increase with 6% H2 and 10% H2

No negative impact on the old boiler Guillot

- The Guillot boiler is an old model without the possibility of regulation (operation in "All or Nothing" mode)
- Therefore, it was not possible to perform relevant performance measurements
- The emissions measured at the various levels of H2 in the gas comply with current regulations

Conclusion of the new gas H2NG demonstration

A demonstrator that guides future work

Continue to optimize the Power-to-Gas chain by relying on improved solutions for operation and monitoring of the equipment

Work on European regulations, standardization & certification with consideration of hydrogen in gas infrastructures and gas uses to prepare for industrial deployment (network equipment, gas analyzer and meter, equipment and installations downstream meters, gas appliances, etc.)

Develop equipment and operationmaintenance procedures adapted to the new composition of the gas supplied (inspection method and frequency, leak detectors adapted to the mixture, etc.)

Extend the compatibility analysis of the natural gas chain by carrying out tests **on the existing devices** (distribution network, indoor installations, downstream meter equipment in the residential, tertiary and industrial sectors)

Continue R&D work on **protection** solutions for sensitive network installations or customers (<u>e.g.</u> membranes separating H2 from natural gas)

As a conclusion

In France, Territorial Communities have an interest in this new green gas

The GRHYD project is preparing the ground for the pre-industrialization and deployment of the new H2NG gas: the next project will increase in size!

Hythane® as fuel for urban buses A pre-commercial demonstration

Conclusion on Hythane® demonstration

Where we are as GRHYD close out:

- An interest in Hythane® fuel, as H2-CNG and H2-bio-CNG blend
- A parallel rise of the H2 mobility market during the GRHYD project lifetime
- But an overall cost analysis (TCO) showing the competitivity of the Hythane® fuel vs CNG and FC
- Questions raised by the GRHYD project are current hot topics due to Power-to-Gas H2 projects development
 - > Adaptation of the European or International regulation to Hythane® fuel & vehicles
 - Potential interesting synergies between H2 and Hythane® due to the development of Power-to-Gas projects on the French grid, assuming environmental and economical performance of Hythane® are confirmed

OPÉRATION RÉALISÉE AVEC LE CONCOURS DES INVESTISSEMENTS D'AVENIR ET DE L'ÉTAT CONFIÉS À L'ADEME

En partenariat avec :

Ville pilote :

Ville pilote Cappelle

THANKS FOR YOUR ATTENTION

Isabelle.Alliat@engie.com Helene.Pierre@engie.com

Ż

HIGGS

Dr. Javier Sánchez-Laínez

Injection of hydrogen in high-pressure gas grids: presentation of HIGGS project

Dr. Javier Sánchez-Laínez Aragon Hydrogen Foundation (FHa), SPAIN

15th December 2021

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 875091 'HIGGS'. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

HIGGS – Hydrogen In Gas GridS

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH JU) under grant agreement no. 875091. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Duration: 36 months Start: 01.01.2020 Funding: 2,107,672.50 €

Goal

HIGGS project aims to pave the way to **decarbonisation of the gas grid** and its usage, by **covering the gaps of knowledge of the impact** that high levels **of hydrogen** could have **on the gas infrastructure**, its components and its management.

How?

- Mapping of technical, legal and regulatory barriers and enablers
 → survey of state of art
- Testing and validation of systems and innovation
 → building a testing facility
- Techno-economic modelling to develop operation strategies

→ Defining a set of conclusions as a pathway towards enabling the injection of hydrogen in <u>high-pressure gas grids</u>

Legal, regulatory and technical aspects (WP2)

Specific objectives

- Investigation on the present regulations, standarizations and certifications (RSC) of the EU for most critical bottlenecks
 - a) on limitations with respect to hydrogen concentrations in the gas system,
 - b) on the corresponding standards.
- Provide updated information on equipment and infrastructure of the existing high-pressure NG grid in EU, to identify the most representative facilities→detailed survey on pipelines, facilities, installations and equipment
- 3. Setup of **mitigation measures** for existing gas appliances and gas system.

Infrastructure analysis results: Target elements to be tested in the platform

- Predominant pipeline's steel grades: API 5L Gr. B, X42, X52, X60 and X70.
- Most common facilities: valve nodes, metering and pressure reduction stats.
 - o Composed of pipes, valves, filters, regulators, meters and instrumentation.
 - Installed by **welding** or using **flanged joints**.

→ Transfer to R&D platform design in WP3

All the Legal, regulatory and technical information is on HIGGS Project public deliverable D2.3. Available soon on the HIGGS Project website (<u>https://www.higgsproject.eu/</u>)

Infrastructure analysis: pipelines

Materials

Renewal time

RSC analysis: Allowed H₂ concentration in NG

Overview of the R&D platform

- It recrates the injection of hydrogen in transmission natural gas grids
- Key elements in the experimental platform
 - Admixture system
 - Testing platform
 - Purification prototype
- Design to work at 80 barg
- Several levels of blending possible (0-100 %vol H2)

Design, preparation and commissioning of testing facilities (WP3)

Design, preparation and commissioning of testing facilities (WP3)

- No Flow: lines filled and pressure mantained during the tests
- Leackeage tests

Component	Tests conditions
Ball Valve	Static
Butterfly Valve	
Plug valve	
Needle valve + screw cap	
(purge)	
Ball valve + screw cap (purge)	

Design, preparation and commissioning of testing facilities (WP3)

- Constant flow of gas at high pressure in closed loop
- Degradation issues (e.g. hydrogen embrittlement)

Component	Tests conditions
Pressure regulator	
Filter	
Flow meter	Dunamia
Pressure switch	Dynamic
Pressure transducer	
Temperature transducer	
Design, preparation and commissioning of testing facilities (WP3)

Degradation issues (e.g. hydrogen embrittlement) ٠

Pig trap

- C-ring specimens \geq
- 4-point bend specimens \geq
- Precracked fatigue compact tension (CT) specimens \geq

Design, preparation and commissioning of testing facilities (WP3)

• Gas separation tests with membrane technology

MEMBRANE PROTOTYPE

Test campaign conditions (WP4)

- At least 3 conditions: i) 20 %vol H_2 in CH_4 , ii) 20 %vol H_2 in CH_4 + H_2S+CO_2 and 100%vol H_2
- 4 months gas exposure @ 80 bar

Results validation

DYNAMIC SECTION

Characterization of materials after exposure: visual inspection for crack detection, metallographic and mechanical investigation

STATIC SECTION

Monitoring H₂ leakeages (pressure control & chromatography)

MEMBRANE PROTOTYPE

 Analysis of composition of gas permeate by gas chromatography

Test campaign conditions (WP4)

Test ongoing: 20 %vol H₂ in CH₄

Preliminary results:

- → Over 1000 h operation right now
- ➔ No significant change in the gas composition

Tecno-economic modelling (WP5)

Network modelling of TENP/MEGAL pipeline sections

•Modelling scope: Pipelines, compressors, regulator stations

- •To be analyzed: 10, 20, 30, 60, 100 (H₂ vol.-%)
 - <u>Not</u> considering future gas separation technologies
 - Including technology innovations needed

•Target parameters:

•Fixed OPEX:

•Maintenance and operation cost for transport systems

•Variable OPEX:

- •Compression work for gas transport
- •Energy expenses for preheating at regulator stations

•CAPEX for system retrofit

Pure natural gas

Premixed gases at model inlet nodes

Tecno-economic modelling (WP5)

Preliminary results: Simulations ongoing...

Hydrogen Backbone 2020

Legal, regulatory and technical aspects

- There is a quite diverse picture on the current status of national legal and technical framework in regards of hydrogen implementation in Europe.
- The analysis of the European NG transmission network has made it possible to:
 - Identify the most representative steels and facilities.
 - Identify the main components and characteristics of these facilities.

Experimental platform

- Tests with blends and pure hydrogen condition @ high pressure.
- Hydrogen embrittlement + leackeage issues.
- Designed to be updated and support future needs and trends.

Tecno-economic modelling

Ongoing network modelling of TENP and MEGAL pipeline sections

Establishing those to be tested

THANKS FOR YOUR ATTENTION!

www.HIGGSproject.eu

HyDeploy₂

Adam Madgett

HyDeploy₂ – NE trial Winlaton

Adam Madgett – Northern Gas Networks

Project Leads and Partners

Cadent

SIMON

Supported by

davelander consulting

Stage 2 Project Objective

To enable a hydrogen supplier to apply for an exemption and inject up to 20% hydrogen into the gas network just as biomethane can today.

Project Funded under OFGEM's Network Innovation Programme

Overall Timeline

Pathway to Deployment

🞯 HyDeploy

Safety Case

- Building on the work from Keele the exemption for Winlaton needed to gather wider evidence on;
- Appliances
 - The safety case based on representative GB appliances,
 - No safety or performance issues identified
 - Use of hydrogen blended gas resulted in lower levels of CO in flue and substantially lower CO produced during fault conditions
- Gas Characteristics
 - Extensive modelling and experimental showed that potential leaks of blended gas within buildings will produce practically identical gas concentrations to NG
- Materials
 - Extension the materials assessment from Keele to address materials on the public network
- Operational Procedures
 - Embodiment of the procedural requirements into NGN operations
- QRA
 - The updated QRA continues to support the premise that safety is not prejudiced by the use of a blend.

NGN Trial Area

- Located in the North East outside Gateshead.
- Isolated network for injection
- 668 Trial properties
 - Including a church and School.
- Wide spread of materials

NGN Low Thornley Site for Hydrogen compound

🞯 HyDeploy

Customer perceptions

- Online and face to face survey 802 people surveyed
- Key findings
 - Reasonably high overall support around active participation in a trial
 - Support contingent on customers prior hydrogen knowledge and reassurances regarding the perceived impact on safety, home appliances, cost, and environmental benefits
 - Two thirds of participants unwilling or unable to pay more for hydrogen
- Helped inform customer engagement for 1st public trial

Customer engagement

- Early engagement was required to explain the scope of the project and offer any support.
- To support the exemption and develop our learning with regards appliances the project had to gain access to as many properties as possible.
- A dedicated customer officer was put in place to support customers if required.
- The team developed a strategy to gain access to as many properties as possible.
- We acquired data on nearly 90% of the trial area properties.

Physical works

- New mains and district governor installed.
- Network isolations carried out to ensure the blend is only distributed to those in the trial area.
- Hydrogen compound construction complete.
- New Hydrogen Grid Entry Unit (HGEU).

Hydrogen compound

Overall Timeline

Pathway to Deployment

Key Differences from Keele

Household number & appliance diversity

Supply chain & regulatory engagement

Roll out evidence gap

Delivering safe and non-disruptive carbon reduction for gas customers

THyGA Workshop Presentation of the project

December 15th 2021

Patrick Milin, ENGIE

Testing Hydrogen admixture for Gas Applications

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Ż

Context: Hydrogen in the gas grid to decarbonise the European energy system

Hydrogen, along with green electricity from wind and solar power, is currently being discussed as a pathway to decarbonise the European energy systems. In this way, the CO_2 footprint of gas utilisation would be reduced, contributing to an overall reduction of greenhouse gas emissions.

INJECT HYDROGEN IN THE GAS GRID

One way to use hydrogen as an energy vector is to inject it directly into the existing natural gas grids.

End-use equipment across all sectors need to deal with higher levels of hydrogen in natural gas in a **safe, efficient and environmentally friendly way.**

OF HYDROGEN

Hydrogen is not part of natural gas compositions, i.e. equipment was never designed with hydrogen in mind.

200 MILLION GAS APPLIANCES

There are an estimated 200 million gas appliances installed in the European residential sector alone

Project consortium: 9 partners in response to the Horizon 2020 call FCH-04-3-2019

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No (No. 874983). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Expected results

CLOSING KNOWLEDGE GAPS

Closing knowledge gaps regarding technical impacts on residential and commercial gas appliances.

IDENTIFYING ADAPTATION OF STANDARDS

Identify standards that should be modified or adapted to answer the needs for new appliances and proposals on test gases.

CLARIFYING THE ACCEPTABLE HYDROGEN PERCENTAGE

Clarify the acceptable hydrogen percentage that wouldn't compromise safety and performance.

Work Packages

ė

Any questions?

Workshop WP3: Input from combustion theory December 15th 2021 Jörg Leicher, GWI

Testing Hydrogen admixture for Gas Applications

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Ż

H₂ admixture and gas quality

- Relative density: $d = \frac{\rho_{n,fuel}}{\rho_{n,air}}$
- GCV: gross calorific value (the energy content of a fuel gas in volumetric terms)
- (superior) Wobbe Index:

WI =
$$\frac{GCV}{\sqrt{d}}$$

Other aspects: temperature

- To assess the impact of a fuel change on the temperatures, it is often useful to look at the adiabatic combustion temperature T_{adiabatic}.
- The adiabatic combustion temperature is the theoretical maximum temperature that can occur in a combustion process.
- It is assumed that the entire thermal energy that is released is used to heat the flue gas, i. e. there are **no heat losses**.
- T_{adiabatic} is only dependent on the compositions of fuel and oxidizer, their temperatures, the system pressure and the air excess ratio λ.

•
$$\Delta T_{adiabatic} \approx 150 \ ^{\circ}C$$

Other aspects: combustion velocity

- The laminar combustion velocity s_L indicates how fast a flame front will propagate into a resting fuel-air mixture.
- It is therefore crucial for flame stabilization, especially for premixed burner systems.
- s_L is dependent on the compositions of fuel and oxidizer, their temperatures, the system pressure and the air excess ratio λ.

Gas quality in the context of H₂

	Unit	100 % CH ₄ (G20)	94 % CH ₄ / 6 % CO ₂	92 % CH ₄ / 8 % N ₂	100 % H ₂	80 % CH ₄ / 20 % H ₂
WI	MJ/m ³	50.64	45.28	45.27	45.78	48.17
NCV	MJ/m ³	34.06	32.02	31.34	10.24	29.30
GCV	MJ/m ³	37.80	35.53	34.78	12.1	32.66
d	-	0.5571	0.6157	0.5901	0.0698	0.592
Air _{min}	m ³ /m ³	9.524	8.952	8.762	2.381	8.095
$\begin{array}{l} \textbf{T}_{ad} \\ \textbf{(\lambda = 1)} \end{array}$	°C	1982	1971	1974	2096	1990
$s_L \ (\lambda = 1)$	cm/s	38.57	36.79	37.52	209	46.67
MN	-	100	105	99	0	80

Impact of H₂ admixture on lamina^{² THyGA} premixed flames (P, λ constant)

 $P = 750 \text{ W}, \lambda = 1$

Natural 25 % 50 % 75 % 90 %

H2

H2

H2

gas H

 $P = 750 \text{ W}, \lambda = 1.2$

H2
Impact on process parameters – no combustion control

- Firing rate:
- Fuel volume flow:
- Air excess ratio:

$$P_{1} \qquad W_{i,1}$$
$$\dot{V}_{Gas} = \frac{P}{H_{i}}$$
$$\frac{\lambda_{2}}{\lambda_{1}} = \frac{CARI_{1}}{CARI_{2}} \approx \frac{W_{i,1}}{W_{i,2}}$$

 $\frac{P_2}{=} \frac{W_{i,2}}{=}$

THyGA

- In the case of H₂ admixture, the firing rate of the burner decreases with higher levels of H₂, while the fuel volume flow increases.
- The air excess ratio shifts towards higher values. This shift compensates some of the effects of H₂ admixture in uncontrolled premixed combustion processes, but also has consequences for adjustment.

73

Flame stabilization in premixed burners – no combustion control

Flame stabilization in premixed *Flame stabilization* in premixed burners – with combustion control

Flame stabilization in partially premixed burners – no control

Combustion control in a heating appliance

- Combustion control systems are usually designed with certain fuel types in mind.
- If the fuel changes too drastically, they may respond in unexpected ways.
- These measurements show results for an appliance with combustion control, based on flame ionization measurement.
- It can be seen that the appliance manages to maintain a constant λ with varying levels of hydrogen at minimum load (Q_{min}), but **fails to do so** at maximum load (Q_{max}).

🕭 THyGA

Combustion control and H₂ admixture

THY_WP3_Mid-Term review

Adjustment

On-site adjustment via CO₂ causes additional uncertainty about the actual setpoint value of λ Adjustment via excess O₂ in the flue gas is more robust => better safety margin!

16-12-2021

THY_WP3_Mid-Term review

Conclusions

- Hydrogen is, chemically speaking, a very different fuel from natural gas. Just looking at one gas quality criterion is not enough.
- It is important to take into account how the combustion process is implemented. Premixed combustion systems (most residential / commercial appliances) behave very differently than non-premixed combustion processes (most industrial applications).
- In uncontrolled premixed processes, many effects of H₂ admixture (T, s_L) are compensated by the shift in the air excess ratio.
 Systems with combustion control cannot exploit this effect... assuming that the control system actually works.
- Adjustment becomes (even more of) an issue. On-site adjustment with an unknown gas via CO₂ setpoints creates additional uncertainty.

ė

Any questions?

Premixed vs. non-premixed combustion

Non-premixed combustion

Adjustment

THyGA Workshop WP3 Experimental Work *December 15th 2021*

Jean Schweitzer. DGC

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

WP3 - Experimental Work (combustion tests) Agenda

- 1. Introduction: Scope and work organization
- 2. T3.1 Elaboration of the test protocols / template
- 3. Test results
 - 3.1 Flashback
 - 3.2 Adjustments
 - 3.3 Adjustments of appliances equipped with combustion controls
 - 3.4 Ionization current
 - 3.5 Efficiency and Emissions
 - 3.6 Heat output
 - 3.7 Other results
- 4. Exploitation of the first results
- 5. Conclusions

Please ask your questions on the chat

Some will be selected and answered after each discussion topic

All will be answered on a Q/A document available later on the THyGA website

Introduction: Scope and work organisation Description

Scope of the project (reminder)

- Domestic & commercial equipment
 - Not in the scope: industrial applications, mobility, power generation
- Hydrogen-natural gas blends (H2NG)
 - Not 100% H2 (if provided appliances can cope from 0 to 100%, it can be tested)

The main goal of WP3, for the combustion tests, are

- To define a detailed test protocol based / define accurately the details of the testing and to guarantee the best possible reproducibility.
- To execute short and long term testing on as many appliance as possible in order to achieve conclusions on sensitivity to H2 by segments of technologies.

Partners in WP3.

• Labs: ENGIE, DGC, GWI, GAS.BE, DVGW-EBI

+ « external » Labs

Manufacturers: BDR THERMEA, ELECTROLUX

Tasks & Timeline

work package lead: 🖺

Evolution in the industry

Since the project was designed, a lot has hapened on H2 front!

Support of the stakeholders

The role of the Advisory Panel Group members is to advise the project to best achieve its goals of and fulfil expectations around THyGA, it implies a close follow-up of the project and its published results.

- More than 40 members: Association, manufacturers, research centers, DSO/TSO, utilities
- Strong link with CEN Technical Committees
- Network of "External Labs": Through the many exchanges organized in Y1, the project saw interest of many stakeholders to participate directly by making their own tests with the THyGA protocol → these additional test results are already used in the interim results analysis

For ThyGA partners

- Help to get us as many as possible results over the « 100 appliances target »
- Help improving of the protocol by external labs
- Leads, questions and analysis that can be included in WP4 and WP5 work program

For External labs

Practice on H2NG through a protocol already discussed with stakeholders by THyGA
Direct support from the THyGA partners on analysis
Best knowledge on their own appliances (manufacturers)

For All

Community of exchanges on the topic, « we all grow together »
Higher field of expertise available

91

Introduction: Scope and work organisation

Iterative process to optimize the test protocol

Feedback from the advisory panel group

• Opinion of the Advisory Panel Group on the WP3 test protocol elaboration (Survey, July 2021)

Introduction: Scope and work organisation Q/A session

THyGA Workshop on interim test results

Task 3.1 Elaboration of the test protocols (from T2.5) and templates

Ż

THyGA tests shall bring light on impact of NG/H2 blends on end-use including:

- SAFETY
- EFFICIENCY

Objectives

- EMISSIONS
- OPERATION

T3.1 Elaboration of the test protocols / template (from T2.5)

Philosophy of the work package tests

OVERALL WORKING CONDITION USED IN THYGA

T3.1 Elaboration of the test protocols / template (from T2.5)

Protocol and gases used for tests

Protocol content & testing program

Combined TESTs with different H2 (up to 60%) blends including CH4, G222, EU-Low and EU-high:

- Safety
- Efficiency
- Emissions
- Operation

Appliances, adjustment tests

Specific safety and operation test

- Cold start.
- Hot start.
- Low air temperature (- 10 C)
- Flue gas pipe length
- ROC (PLUGG FLOW)
- Impact of H2 on flame detection.
- Delayed ignition test.
- Soundness
- Quick variation Qmin-Qmax Shut-off
- Overheat. Meas. of temp.
- Cooker hob test with 4 burners on
- Influence of wind
- Long term (limited time)
- Fluctuation of the aux. energy
- Fluctuation of pressure

THyGA

T3.1 Elaboration of the test protocols / template (from T2.5)

Protocol and testing instruction (examples)

The test protocol is gathering detailed instructions to the labs on how to perform the test in practice.

Testing Hydrogen admixture for Gas Applications

THYGA INSTRUCTION FOR THE TEST PROTOCOL for testing in laboratories

🕭 THyGA

2 Flashback (NOTE THAT THIS MAY BE REVISED IN LIGHT OF TEST RESULTS)

Flashback (FB) is one of the main parameters: we need to be certain to reproduce as best as possible during the testing.

This is more likely to happen with atm. appliances

We will use basically two methods:

- Detection with TC at top & below burner when possible. FB will typically result in a strong increase of temperature
- 2) Visual: Labs are requested to film open flames.

There will be limitations to the methods above and we will not be able to instrument appliances with closed combustion chambers and on those we will not see the flame either. We will have to rely on noise or increase or variation of another measured parameters in the flue gost

Flashback analyze II flashback is occurring during testing laboratories shall as far as possible check the possible consequences on the appliances. Pictures of damaged component shall be taken a discussion with manufacturers shall be established. The result of the discussion shall be reported.

For cookers/hobs the is done with the pot as this is the real situation and this is also a more severe condition.

We can distinguish between partial flashback (example on the fieme on the right side) and complete flashback (this is where the fiames is entirely below the surface of the burner.

🖨 THyGA

4.3 Instructions to perform the test following the sheet "DATA SHEET]

TESTING PART 1 SAFETY TESTS

1.1 SAFETY- EMISSIONS and EFFICIENCY with CH4 (NOTE that for cooker; Efficiency is treated spart due to the test procedure)

Short Description	The test is aiming at detecting FB. Or safety issues + checking impact of H2 on efficiency and emissions. For cookers efficiency is treated apart due to the test procedure					
More detailed description	The test is first carried for Qmax at Pnom and with an increasing % of H2. The same tests are repeated for Qmin (see H2 % at next slide)					
Gas to be used	CH4 (NG OK for getting stabilization)					
Execution	CH4 with increasing H2%. STOP IN CASE OF FLASHBACK. The test shall be FILMED for open flames and high H2 where FB can occur.					
Appliance set up	If adjustable, appliances are set up according manufacturer instructions					
Other test conditions	See TEST SHEET					
Time	Test shall be carried out with a period of stabilization long enough to guarantee repeatability of efficiency test. The duration of each of the tests shall be registered in the datasheet as time is an important factor for FB.					

16-12-2021

THyGA T3.1 Elaboration of the test protocols / template (from T2.5) Reporting template's main data sheet

More

columns

T3.1 Elaboration of the test protocols / template (from T2.5) Appliances included in the test programme (from WP2)

Source: wellstraler

Table 2.3 : Market Segmentation of gas first appliances. The overview table shows the appliance population of each market represent to £11, 2020. Unknown: no occurate data available.

THyGA Segment	Type of appliance				Estimation of Total EU Appliance Population 2020 (s 1,000)	
301		lesen :	partial pre-mis/cone. (atrees, & fan-ausisted)		13.588	
102		open flued (former EN 297)	Row NO.		2.012	
103			full pre-trite		152	
104		more walled	partial pre-min/cone. (atmos. & famed)		25,333	
105	804285	BOILERS	New NO ₂	EN 15502	1,972	
106		DUILERS	full pre-mix		1,781	
107		condensing boller	partial pre-mix fam- assisted		2,920	
108		(Permar EN 677)	full pro-rets (including CCB)		56,492	
109		Fornall draught burners / jet burners (former EN 303-3)	Forced-draught / jet		1.529	
201		Instantaneous open Rued gartial pre-mis/atmos.		EN 25	14.945	
202		instantaneous room sealed	partial pre-mix/farmed	00000	ALCOURSE.	
203	WATER	VATER	IEATE	RS	3,121	
105			single ring			
802		surface horses (cookings) with	single stown		32.574	
303		atmospheric burner or "Verturi" burner (vertical venturi burner)	multi ring (mainly double or triple ring)		36374	
304			single ring			
805		surface burrar (sooktigst) with partially pre-mix burrar pang	single crown		12.052	
806	COOKERS	hortzamtal ventur()	multi ring (mainly double set triple ring)	69(30.4	1.574	
807	(COOKER	ermunpheric burner		3,853	
808		Treestanding ranges	venturi" liumer		3,895	
809		American States 1	partially pro-min		27,712	
\$10		cavity burner "metal sheet"	atmospheric burner		13,056	
911		(overs, freestanding ranges)	"venturt" humer		0.000	
812	-		partially pre-min strendar human with		14,658	
401		open formers and wok burners	wertical sluts	EN 203-3-1	unterson	
402	CATERING		circular burner with Insiel	and the second		
403	1	mised overs	draught horners.	EN 2018-3-2	unknown	

104 11 11 107 11 11 11 107 11 11 11 11 107 11 11 11 11 11 108 11 11 11 11 11 11 108 11 11 11 11 11 11 109 11 11 11 11 11 11 109 11 11 11 11 11 11 109 11 11 11 11 11 11 109 11 11 11 11 11 11 109 11 11 11 11 11 11 110 11 11 11 11 11 11 111 11 11 11 11 11 11 111 11 11 11 11 11 11 111 11 11 11 11 11 11 111 11 11 11 11 11 11 111 11 11 11 11 11 11 111	404		oversi	tubular or circular burners			
нали заваниенийст / голлантого налищий с / голлантого 199 2012-2-3 саяваниенийст / голлантого 109 International Contractional Contraction Contractional Contraction Contractional Contractiona	405		builting parts / parts tookers		EN 203-2	interest.	
нали заваниенийст / голлантого налищий с / голлантого 199 2012-2-3 саяваниенийст / голлантого 109 International Contractional Contraction Contractional Contraction Contractional Contractiona	406		ATEDIN	m min burner	EN 225-2-4	vyAncus	
Non-Section	407		salamanders / rottiseties	Contraction of London Lines of	111 201 2 3	wances	
1007 Takes, pancake coolemity range tobula barrier 1/k 2007-0 control 1420 Intercent therap of addition barriers 1/k 2007-0 intercent 1420 Intercent therap of addition barriers 1/k 2007-0 intercent 1420 Intercent therap of addition barriers 1/k 2007-0 intercent 1420 Intercent therap of addition barriers therap of addition barriers 1/k 2007-0 intercent 1420 Intercent therap of addition barriers therap of addition barriers 1/k 2007 1/k 2007 1420 Intercent Therap of addition barriers therap of addition barriers 1/k 2007 1/k 2007 1421 Intercent barriers Therap of addition barriers therap of addition 1/k 2007 1/k 2007 1/k 2007 1421 Intercent barriers Therap of addition Therap of addition 1/k 2007 1/k 2007 1/k 2007 1421 Intercent barriers Therap of addition barriers 1/k 2007 1/k 2007 1/k 2007 1421 Intercent barriers	408		Beat para.		111,223-2-8	unknown	
140 Medicaniani Medicaniani watana Medicaniani watana Medicaniani watana Medicaniani watana Medicani Medica	409				(N 203-2-N	unterpret	
No.1 No.2 No.2 No.2 No.4 No.4 No.4 No.4 No.1 No.4 No.4 No.4 No.4 No.4 No.4 No.1 No.1 No.1 No.1 No.1 No.1 No.1 No.1 No.1	410		larberare			Selecter 1	
No.000 replaces/former No.000 Recently & Accuration RX 508 A527 1004 Minimum ge ford Muddae Minimum ge ford Muddae Minimum ge ford Muddae Muddae 1000 No.000 192 2423 198 1004 PPC Minimum ge ford Muddae Muddae Muddae 1000 No.000 Silentration 192 2423 198 1005 PPC Minimum ge ford Muddae Muddae Muddae 1000 No.000 Ad.8 40.8 1005 PPC Minimum ge ford Muddae Muddae Muddae Muddae Muddae Muddae Muddae 1001 No.000 198 20465 0.5 1001 PPC Minimum Muddae Mudda	501			bearing & descention	01613	4.678	
No.000 replaces/former No.000 Recently & Accuration RX 508 A527 1004 Minimum ge ford Muddae Minimum ge ford Muddae Minimum ge ford Muddae Muddae 1000 No.000 192 2423 198 1004 PPC Minimum ge ford Muddae Muddae Muddae 1000 No.000 Silentration 192 2423 198 1005 PPC Minimum ge ford Muddae Muddae Muddae 1000 No.000 Ad.8 40.8 1005 PPC Minimum ge ford Muddae Muddae Muddae Muddae Muddae Muddae Muddae 1001 No.000 198 20465 0.5 1001 PPC Minimum Muddae Mudda	503	384	PACE H	FATER	C****	LAW	
No.00 No.00 <th< td=""><td>503</td><td></td><td>Decir alles the error gas appliance/hornes</td><td>feating & description</td><td>and a second second</td><td colspan="2">8,509</td></th<>	503		Decir alles the error gas appliance/hornes	feating & description	and a second second	8,509	
No.2 Chi Human as traches PKM Fuel (SR Austing & sleathing & sleathing and childs Austing & sleathing and childs A	504			baring & describer	19(14829		
Loss -Child Millingte variance production Loss 0.5 Loss PLM Fund Call production IN Schede 3 3 Loss So Fund Call So Fund Call 3 3 3 Loss Advocation Heatingto Life Heatingto Life 3 3 Loss argents Life Heatingto Life Heatingto Life 40 40 Loss advocation Heatingto Life Heatingto Life 40 40 Loss assemmential drivers Heatingto Life Heatingto Life 40 40 Loss astremential drivers Heatingto Life Heatingto Life 40 40 Loss astremential drivers Heatingto Life Heatingto Life 10 <td< td=""><td>601</td><td></td><td>Mirling angines</td><td></td><td></td><td></td></td<>	601		Mirling angines				
Loss -Child Millingte variance production Loss 0.5 Loss PLM Fund Call production IN Schede 3 3 Loss So Fund Call So Fund Call 3 3 3 Loss Advocation Heatingto Life Heatingto Life 3 3 Loss argents Life Heatingto Life Heatingto Life 40 40 Loss advocation Heatingto Life Heatingto Life 40 40 Loss assemmential drivers Heatingto Life Heatingto Life 40 40 Loss astremential drivers Heatingto Life Heatingto Life 40 40 Loss astremential drivers Heatingto Life Heatingto Life 10 <td< td=""><td></td><td></td><td>en la rebustion seights</td><td>Another & Manhood</td><td rowspan="3">191 50465</td><td></td></td<>			en la rebustion seights	Another & Manhood	191 50465		
100 100 Fund Call 3.3 101 argins 10 ⁰ 101 Last Call 101 Last Call 102 101 G HPP alacogram Heating 101 Last Call 101 argins 10 ⁰ Alacogram Heating 101 argins 10 ⁰ IN 12/00 102 argins 11 ⁰ Heating 103 argins 10 ⁰ IN 12/00 104 brand callarit heaters (former IN 415-13 In alacegram 105 brand callarit heaters (former IN 415-13 In alacegram 104 Differed radiant heaters (former IN 415-13 In alacegram 105 Differed radiant heaters (former IN 415-13 En 415-13 104 Differed radiant heaters (former IN 415-13 En 415-13 105 Differed radiant heaters (former IN 415-13 En 415-13 106 Differed radiant heaters (former IN 415-13 En 415-13 107 Differed radiant heaters (former IN 415-13 En 415-13 108 Differed radiant heaters (former IN 415-13 En 415-13 109 Theaters (Former IN 415-13 En 415-13 101		00	Aller of gas Nurfaites				
Image: constraint of the second sec	-	4					
Image Image <th< td=""><td>605</td><td>-</td><td>SD Fuel Cyd</td><td></td><td></td><td>11</td></th<>	605	-	SD Fuel Cyd			11	
No. Open Pairs No. 12752-13 antername 1001 samewantal dryses nodomastic, 'tobe 100 12752-13 antername 102 Marcod radiant heaters (formar nodomastic, 'tobe 100 12752-13 antername 102 Marcod radiant heaters (formar nodomastic, 'tobe 100 435 100 435 103 Definition of trained radiant heaters (formar nodomastic, 'tobe 100 435 1.000 104 Definition of trained radiant heaters (formar nodomastic, 'tobe 100 435 1.000 104 Definition of trained radiant heaters (formar nodomastic, formation of trained radiant heaters (formation of trained radiant heaters) 100 435 1.000 104 Definition of trained radiant heaters (formation of trained radiant heaters) 100 435 1.000 105 Definition of trained radiant heaters (formation of trained radiant heaters) 1.000 1.000 105 Definition of trained radiant heaters (formation of trained radiant heaters) 1.000 1.000 106 Definition of trained radiant heaters (formation of trained radiant heaters) 1.000 1.000 106	701		angina HP	and the	EN 16805		
Vite Advance from Advance from 1001 Interview of addition of headsets 101 107 52-3 satisformum 1002 Interview of addition of headsets 101 107 52-3 satisformum 1003 Interview of addition of headsets 101 450 101 450 1004 Interview of addition of headsets 101 450 1,000 1004 Interview of addition of headsets 101 450 1,000 1004 Interview of headsets 101 450 1,000 1004 Interview of headsets 101 450 1,000 1005 Interview of headsets 101 450 1,000 1006 Interview of headsets Interview of headsets 1,000 1007 Interview of holds Interview of headsets 1,000 1008 Interview of holds Interview of headsets 1,000	702	6.9		Heating	0.55523	40	
101 Introduction of particular structure 102 Introduction of particular structure 103 Introduction of particular structure Introduction of particular structure Introduction of particular structure International structure 104 Introduction of particular structure International structure International structure International structure 104 International structure International structure International structure International structure 104 International structure International structure International structure International structure 105 International structure International structure International structure International structure 106 International structure International structure International structure International structure 107 International structure International structure International structure International structure 108 International structure <td< td=""><td>708</td><td></td><td>absorption.</td><td></td><td>614 12309</td></td<>	708		absorption.		614 12309		
102 0.0 104 <td>101</td> <td></td> <td>conversal dryses.</td> <td></td> <td></td> <td>witness</td>	101		conversal dryses.			witness	
104 0419-33 satisfiest hearters 04182 0.000 104 0 0 0 0 0 105 0 0 0 0 0 107 0 0 0 0 0 108 0 0 0 0 0 109 0 0 0 0 0 109 0 0 0 0 0	102				EN 415		
101 All Towards (N 1020) International Society (N 12082) EVENTS	608				EN ALV	5,000	
101 All Towards (N 1020) International Society (N 12082) EVENTS	804	0	THER (mainly	EN 416		
bit heaters = VDAW (former ENT78) Ducted warm all: forced convertion all heaters EN 17082 00 dementic weshing machines EN 1518 < 10	805	STHEN.			EN 12082		
Identification Identif	806		ommer	cial)	6N 17082	1,000	
	867				£N 17082		
109 damastic dryon EN 1518 - 10	808	1	slamentic weshing machines	see all see hand see a	UNISIA	+ 10	
	809		dumentic dryers		EN 1518	+ 10	

T3.1 Elaboration of the test protocols / template (from T2.5)

Appliances included in the test programme (from WP2)

Supposed Sensitivity to H2 (1 low (premix), 2medium (partial premix); 3 high (atm. + no info on burner)	Can be adjusted (1) or not (0) (1 will double the sensitivity). (actual situation for GASQUAL TEST only 2 segments could be adjusted!)	Diversity of technologies and materials	Existing experience Reduction factor due to (useful) tests from previous projects	Market Orientation Factor 2030	Estimation of Total EU Appliance Population 2020 (in .000)		PRIORITY FACTOR	%	Number of applianc es to test following market segment ation	rounded results
2	0	0.5	1	0.5	13,588		6794	2%	0.84	1
2	0	0.3	1	0.3	2,012		362	0%	0.04	1
1	1	0.5	1	0.5	152		76	0%	0.01	1
2		0.5		<u> </u>	05 000		40007	3%	1.56	2
2	Co	Combining market data with other parameters					0%	0.07	1	
1						1%	0.31	1		
2	to to	to calculate the number of appliances to be							1.44	2
1										12
1		tested by segments								1
2	0	0.5	1	0.3	43,242		12973	3%	1.6	2
2	0	0.5	1	0.6	38,796		23278	6%	2.86	3
2	0	0.5	1	0.3	5,397		1619	0%	0.2	1
2	0	0.5	1	0.6	2,292		1375	0%	0.17	1

T3.1 Elaboration of the test protocols / template (from T2.5) Q/A session

THyGA

3- Test results

- 3.1 Flashback
- 3.2 Adjustments
- 3.3 Adjustments of appliances equipped with

- combustion controls
- 3.4 Ionization current
- 3.5 Efficiency and Emissions
- 3.6 Heat output
- 3.7 Other results

Objective and content of the tests

Objective: understand how appliances react in the short term (few minutes to few hours) on different H2NG blends. The evaluation covers safety, energy efficiency, emissions, operational aspects

- Parameters to measure are:
 - ✓ Combustion/emissions
 - ✓ Efficiency
 - ✓ Safety
 - ✓ Operational aspects (Normal operation of the appliances or not)
- Parameters to vary are:
 - ✓ H2 % according the levels indicated in the call (in addition, 100% H2 will also be tested when possible, for a short time.)
 - ✓ H2 Rate of change (ROC)
 - ✓ Natural gas composition
 - ✓ Addition of H2 with constant pressure and with increased pressure (when possible) to keep the heat input constant
 - ✓ Pressure
 - Adjustment or not. (Appliances adjusted to NG in the highest range of the H gas range are expected to be more sensitive to hydrogen compared to appliances adjusted in the lowest range)

Interim test results: Analysis based on about 20 appliance tested

Report	SEGMENT Nr	Appliance category	Appliance type (2)	Burner type	For cooker hobs: burner tested?	Modulatin g burner (Y/N)	Pressure regulator (Y/N)	Can the appliance be adjusted (Y/N)	Com busti on control (Y/N)	Max. power input (net) [kW]	Min. power input (net) [kW]
GA1_SEGM_	101	Boiler		Atmospheric		Y	Y	N	N	25.8	11.0
GW2_SEGM	102	Boiler		Low Nox		Y	Y	Y	N	22.2	8.9
GW03_SEGN	103	Boiler		Atmospheric		N	Y	Y	N	17.0	
BA01_SEGN	107	Boiler		Low NOx		Y	Y	Y	Y	24.8	10.6
D4_SEGM_1	108	Boiler		Premix		Y	Y	Y	Y	20.0	4.8
GW1_SEGM	108	Boiler		Premix		Y	Y	Ν	Y	24.0	6.9
GA5_SEGM_	201	Water heate	er	Atmosperhic		N	N	Ν	N	10.5	5.3
GA5_SEGM	201	Water heate	er	Atmosperhic		Ν	N	Ν	Ν	10.5	5.3
D1_SEGM_3	301	Cooking Hol		Atmospheric (*) Atmospheric (*)	Large	N	N	N	N	3.0	0.8
D2 SEGM 3	301	Cooking Hol			Small	N	N	N	N	1.0	0.5
D3 SEGM 3		Oven			Oven	N	N	N	N	2.5	1.0
D7 SEGM 3	301	Cooking Ho	b	Atmospheric	Large	N	N	N	N	2.7	0.7
D8_SEGM_3	301	Cooking Hol	b	Atmospheric	Small	N	N	N	N	0.9	0.3
D9_SEGM_3	311	Oven		Cavity burner	Oven	N	N	N	N	2.4	0.8
D10_SEGM	311	Oven	Grill	Cavity burner	Oven	N	N	N	N	1.7	
GA4 SEGM	406	Catering	Fryer	Premix		Y	Y	Y	Y	31.0	16.0
GA3_SEGM	407	Catering (O		Atmospheric		N	N	N	N	5.9	
GA2_SEGM	503	Fire - Conve	ection heater	Atmospheric		Y	Y	Ν	Ν	5.8	3.1
			(*) Atmosph	eric PartiallyAerate	ed Single Ring	burner" (hob)				

Interim test results: Overview of the main results (for most domestic appliances)

When **replacing natural gas by H2** without changing the air quantity, **the air excess will increase** (as less air will be

(as less air will be needed for the combustion)

In general, the increase of air excess will:

- Impact the flame velocity (it will increase for atmospheric burners and be stable or slightly decreasing for premix burners)
- Impact the flame temperature (decrease) and then NOx emissions (decrease)

Increase the relative flue gas losses

For condensing boilers, the additional loss due to more flue gas loss may be compensated by larger amount of latent heat recovered (condensation).

Interim test results: Overall impact (for most domestic appliances)

Interim test results: Overview of the main results

Globally

- The atmospheric technologies tested so far have been able to cope with 30% of H2.
- The main issues above 30% with atmospheric burners like cooking hobs is the flashback and high temperature due to a lower flame size. This was also expected as it is in phase with literature and theory.
- The principal reason for issues for the premix appliances is the adjustment. If we consider that this can be solved (eg. making adjustment by third party impossible), most appliances will have no problem anymore and can burn up gas with at least 40% H2.

	А	PPLIA	NCE			H2 % Tested													
Code	Applia nce	Burn er	Origi n	Seg men t	Qma x	At what level the problem may occu 0 10 20 23 30 40 50													
PRE	MIX B	URN	ERS	-															
GA04 Catering Premix New d			New de	406	31														
GW02	GW02 B Low NC old/ use 102																		
GW01	в	full prer	old use	108	24														
BA01	в	Low NO	New ap	107	24.8	X X													
D4	в	Premix	Sent by	108	20	x X													
D5	Boiler	Premix	Sent by	108	20.8							X	Х						
ATM	BURN	NER S	S																
D3	EN30 free	atmosp	Bought	301	2.5	X				X	X		Х						
D2c	EN30 free	atmosp	Bought	301	1	X							Х						
D1	EN30 free	atmosp	Bought	301	3	X						X							
D7	сн	Surf. at	sent by	301	2.703	X	x		x		х								
D8	сн	Surf. at	sent by	301	0.901	X			x		x								
D9	C Oven	Cavity	sent by	311	2.432	X			x		х								
D10	C Oven	Cavity	sent by	311	1.712	X													
GA03	Catering (Atmos	New ap	407	5.9	X					Х								
GA05			Already		10.5	X			X		X								
GA02	EN613 Co	Atmos	Already	503	5.8	X			X		X	X	Х						
GA01	-	Atmos	Already	101	25.8	X			X		X	X							
GW03	в	atmosp	old/use	103	17	X	X	X	X	X	Х	Х	Х						

Interim test results: Overview of the main results

Interim test results: no Q/A session

Deep dive in the results in the next slides !

THyGA Workshop on interim test results

3.1 Flashback

Picture THyGA application 2019

WP3 - Experimental Work

Progresses, status and achievements: *Task 3.3 Data compilation and validation* Subtask 3.3.1: Test result and analyse Short term test Intermediate results

Air excess is increasing with the addition of H2 for most of appliances But flame speed will only increase with H2 when initial lambda < 1.2 (= mostly atm. burners)

Flashback: Results

Flashback or partial flashback was observed on 5 appliances, 4 of them being atmospheric appliances.

- Partial flashback for a full premix boiler (BA01) was observed at 60% H2 (but not at 50%).
- For the atmospheric appliances, signs of partial flashback (e.g., increasing of combustion noise) was observed from 40%H2. Flashback was generally observed above 40%H2 (40, 50, 60% tests).

Source : University of Michigan at the 2014 University Turbine Systems Research Workshop

The flashback occurrence may sometimes be difficult to identify for appliances where the burner is not visible (typically for premix appliances).

Consequently, there may have been some partial flashback in some case, that we are not aware of.

Flashback: impact of time

FB may appear after long operation time!

t = 15 s

t = 5 min

t = 8 min

Present procedure from standards for flash back is not adapted to H2.

- \rightarrow THyGA has updated own procedure
- \rightarrow THyGA results are already shared with CEN

Flashback: can be accompanied by an **increase in CO**

Flashback: Q/A session

THyGA Workshop on interim test results

3.2 Adjustments

Adjustment of air excess during maintenance or commissioning.

Done on Premix burners appliances = Condensing boilers + some catering equipment + other

Adjustments: Example of manufacturer instruction

TABELLE 1: Ventilator-Drehzahlparameter und CO₂-Werte (%)

Adjustment on CO2

			PARAMET									
	T.		Ē	Jk	111		P min	Vorderer Gehäusedeckel geschl				
	Prime 1.24	Prime 1.24	Prime 26	Prime 30	Prime 26	Prime 30		со	CO max			
	DP003*	GP007*	DP003*	DP003*	GP007*	GP007*	GP008*	Nenn und Toleranzen				
	28kW	24kW	26kW	30kW	20kW	24kW	4,8kW	Pn Max	P min	ррт		
G20	8300	7300	7800	9150	6200	7300	2200	<mark>9,0%</mark> (8,8÷9,4)	8,5% (8,1÷8,6)	<250		
G30	7700	6800	7500	8700	5800	<mark>6800</mark>	2200	10,4% (10,2÷10,8)	9,8% (9,2÷9,8)	<250		
G31	7700	6800	7500	8700	5800	6800	2200	10,3% (10,2÷10,8)	9 ,7% (9,2÷9,8)	<250		

* Parameter für Drehzahländerung

Boiler D4 instruction manual

Adjustments: THyGA scenarios

For test A:

- appliances are adjusted with EU high
- and tested with **EU low, and EU low + H2** (10%, 30%, 60%)

For test **B**:

- appliances are adjusted with **EU low**
- and tested with EU high, and EU high+ H2 (10%, 30%, 60%)

CASE	EU low + 0 to 60% H2	EU low	CH4	EU high + 0 to 60% H2	EU high
Α	Used	+			Adjusted
в		Adjusted		──→ Used	

For test G:

- appliances are adjusted with EU low + 20%H2
- and tested with **EU high, and EU high + H2** (10%, 30%, 60%)

For test **H**:

- appliances are adjusted with EU high + 20% H2
- and tested with EU low, and EU low + H2 (10%, 30%, 60%)

CASE	EU low + 20% H2	EU low +0 to 60% H2	CH4	EU high + 20% H2	EU high + 0 to 60% H2
G	Adjusted	_		_	➡ Used
н		Used 🔶		Adjusted	
				-	TZA

H2 from 0 to 20% (*)

NG from EU high to EU low

(*) During adjustment and 0 to 20% or more after

Adjustments: Illustration with the test of D4 Boiler (1/3)

<u> </u>														•											DJUSTEI MANUAL
<u> </u>		JUSTM			-			:0).																	
		et to EU hig	-			-	ó.		LY IN THE	TABLE	INSTAN	TANEOU	JS DATA	A: FOCU	S ON PO	SSIBLE:	high CO, ab	norma	il oper	ation,	etc	NOTIN	OBSE	RVATI	ONS AR
STABI	LISATIO	N AFTER ADJ	USTMENT C	H4 (at Qma	x and Q mir	ר)			nances is	<u> </u>	-														
84			NR	NR	NR		EU high	0	52.52	0.620	39.437	43.623	11.941				0.00	20.6	1016.7	20.6	9.0	5.2	56.6	17.9	7.9
85	0		NR	NR	NR		EU low	0	48.66	0.577	35.143	38.981	11.679				0.00	20.7	1016.7	20.7	7.8	6.8	19.3	6.8	4.6
86	Qm	Iax	NR	NR	NR		EU low	10	46.58	0.526	32.050	35.639	11.363				0.00	20.4	1016.6	20.4	7.3	7.4	14.2	5.2	3.9
87			NR	NR	NR		EU low	30	44.48	0.428	27.447	30.684	10.635				0.00	20.2	1016.6	20.2	6.4	8.4	1.4	3.3	3.0
88			NR	NR	NR		EU low	60	41.57	0.271	20.131	22.808	8.631				0.00	20.1	1016.5	20.1	4.5	10.1	3.7	1.9	1.8
Additie	onal test	if flash back	occurs at H	2 = X FB %	make a test	between the	two last	points																	
89	0	Data	NR	NR	NR		EU low	X1	****	0.000	0.000	0.000	#####												
90	Q _{max}	Pnom	NR	NR	NR		EU low	X2	****	0.000	0.000	0.000	#####				######################################					7			
Qmin	- GAS s	et to EU hig	h and used	with EU lov	w with incre	easing H2%.																			
STABI	LISATIO	N AFTER ADJ	USTMENT C	H4 (at Qma	x and Q mir	n)			nances is	requir	ed														
91			NR	NR	NR		EU high	0	52.76	0.621	39.667	43.873	11.950				0.00	21.1	1017.0	21.1	8.4	6.1	1.7	8.5	3.4
92			NR	NR	NR		EU low	0	47.88	_	_	38.264	_				0.00	20.3	1017.0	20.3	7.4	7.5	1.6	4.5	2.3
93	Om	nin	NR	NR	NR		EU low	10	46.57			35.616					0.00	19.9	1017.0	19.9	7.0	8.1	1.4	3.2	1.7
94	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		NR	NR	NR		EU low	30	44.46	0.427	27.416	30.650	10.630				0.00	19.7	1016.9	19.7	6.0	9.2	1.1	2.0	1.2
95			NR	NR	NR		EU low	60	41.55			22.761					0.00	19.8	1016.9	19.8	4.4	10.6	0.8	1.2	0.9
Additi	onal test	if flash back	occurs at H	2 = X FB %	make a test	between the	two last	points							1										
96			NR	NR	NR		EU low		#VÆRD!	######	######	######	######				#VÆRDI!								
97	Q _{min}	Pnom	NR	NR	NR		EU low		#VÆRDI	######	######	######	#####				#VÆRDI!								

Adjustments: Illustration with the test of D4 Boiler (2/3)

For test A:

- appliances are adjusted with **EU high**
- and tested with **EU low + H2**

For test **B**:

- appliances are adjusted with **EU low**
- and tested with EU high+ H2

For test G:

- appliances are adjusted with EU low + 20%H2
- and tested with **EU high + H2**

For test **H**:

- appliances are adjusted with **EU high + 20% H2**
- and tested with **EU low + H2**

Adjustments: Illustration with the test of D4 Boiler (3/3)

What we see from the first tests

- Adjustment G is the most problematic: high CO
- A,B,H are showing only positive H2 impact

- 10% and 30% H2 instead of 20%
- Adjustment with O2 instead of CO2

Adjustments: Conclusions so far (1/2)

Most critical situation = Appliance set with gas with low Wobbe including H2 and used suddenly with high Wobbe gas (bringing combustion close to stoichiometry)

Potential consequence on the market:

- Installers need to be able to assess the % of H2 in the grid during installation and maintenance.
- Or adjustment shall be banned 16-12-2021

Adjustments: Conclusions so far (2/2)

Worst case scenario: gas quality may change suddenly after the adjustment

Or a NG in the lowest range of Wobbe

Adjustments: Q/A session

THyGA Workshop on interim test results

3.3 Adjustments of appliances equipped with combustion control (CC)

Adjustments of appliance with CC: impact of H2

Adjustments of appliance with CC: Illustration with boiler D5 (1/2)

Combustion control somehow works at Qmin (O2 more or less constant)

Boiler D5 equipped with Combustion Control

- For the test 3.3c (Adjustment G2), the appliance is adjusted with [EU low + 20% H2] to obtain a CO2 value of 9,2 % (nominal load) given by the manufacturer in the boiler manual.
- The set value for O2 that correspond to 9,2 % CO2 and with G20 (pure methane as this is the reference condition for the adjustment) is calculated to 4,44 % O2.
- The increase of CO from [EU low + 20% H2] to [EU high] is not critical

Adjustments of appliance with CC: Illustration with boiler D5 (2/2)

some instability in the "auto adjust" function of the boiler, with frequent auto adjust attempts accompanied of CO peaks.

Adjustments of appliance with CC: Q/A session

Patrick I suggest to have QA for the rest of the presentation at the end

THyGA Workshop on interim test results

ė

3.4 Ionisation current

Ionisation current: first results (1/2)

Impact on ionisation current \rightarrow relative stability of the values \rightarrow Ionisation technology still work for flame supervision

Ionisation current: first results (2/2)

Ionisation current: Q/A session

THyGA Workshop on interim test results

3.5 Efficiency and Emissions

Efficiency and Emissions: first results

Impact of some indicators, mainly because of the change of air excess

FOR BOILERS when H2 % is increasing:

- Efficiency not very much impacted, but the result will be depending on the water temperature. (Especially close to dew point it can make a difference in latent heat recuperation for condensing boilers).
- **NOx** will be decreasing
- **CO** can or not be impacted
- CH4 emission decreasing with H2

Subtask 3.2.1: Short term combustion tests Efficiency

138

Subtask 3.2.1: Short term combustion tests Efficiency

Changes are close to uncertainty of measurement

Subtask 3.2.1: Short term combustion tests NOx Emissions

Subtask 3.2.1: Short term combustion tests NOx Emissions

Efficiency and Emissions: Q/A session

16-12-2021

THyGA Workshop on interim test results

3.6 Heat output

Heat output: first results

ė

3.7 Other results

Subtask 3.2.1: Short term combustion tests

Other results: **Safety aspects that are not an issue** (so far)

- Both impacts of "low air temperature (- 10 °C)" and "Flue gas pipe length" have been tested on 1 and 2 appliances (boilers) respectively, and the results from the test done show no impact of hydrogen.
- ROC (PLUG FLOW) was executed on 13 appliances without showing any issue (generally variation from 0 to 40% H2 and the other way round).
- The delayed ignition test was made on 1 appliance only with 30% H2. There was no safety issue, but we need to have a few more of those tests.
- The soundness was newly tested on 1 appliance and there was no issue observed. There is no specific test protocol for hydrogen natural gas blends.
- Fluctuation of the auxiliary energy was tested on 1 appliance, without impact on safety.
- For overheating due to hydrogen, the temperature was measured on a gas cooker hob.
- The **influence of wind** on exhaust ducts was tested on 2 appliances (no impact).
- Long-term (limited time) consisted in testing appliances for few hours when possible. Some tests were done and have not shown issues so far.

Subtask 3.2.1: Short term combustion tests

Heat output: Q/A session

Subtask 3.2.2: Long term combustion tests Objectives

Objective: to observe possible appliances alterations (performances or physical alteration) in the long term (few month) with given H2/NG mix.

- Possible alterations are monitored by measurements in the combustion gas (flue gas).
- The appliances tested will be dismantled at the beginning and end of the tests (visual observations).
- The idea of the long term testing is to simulate a real testing in accelerating time by severe tests constrains (cycling of the burner, high temperature, possibly overload, etc.)

DGC's long term test rig is especially designed to monitor gas appliances performances over testing periods of several weeks or months.

Subtask 3.2.2: Long term combustion tests

Methodology and planning

Other results Q/A session

THyGA Workshop on interim test results

THYGA 4 Exploitation of the first results

Exploitation of the first results Dialog with CEN TCs

Workshops and exchanges on the THyGA program and protocol

1st Workshop of the THyGA project

This first public event gathered around 100 stakeholders. The workshop was aimed at presenting first research results, methodology and discuss the specific consequences of hydrogen blending for the gas appliances sector, with the participation of researchers, manufacturers and associations.

Read more

OCTOBER 30. 202

Read more

WEBINAR "IMPACT OF HYDROGEN ADMIXTURE ON RESIDENTIAL AND COMMERCIAL COMBUSTION PROCESSES INSIGHTS FROM COMBUSTION SCIENCE"

Another successful event with > 360 registrations! Available for download And don't forget, you can also DOWINLOAD THE REPORT And the replay of the webinar for those that couldn't join:

MARCH 21.

WP4 – Technical workshop "H2NG supply to residential and commercial appliances – standardization and certification".

A key issue in a transition to common use of relevant shares of hydrogen in natural gas supply is safe operation and reliable functioning of end-use appliances. The lifetime of these end-use appliances is considerable and so new gas appliances put on

the market should ideally be compatible with these admixtures as soon as possible....

Read more.

Participation of THyGA partners to the TCs, dissemination of the results and advancement of the project

Exploitation of the first results

Synergy with other projects – GERG PNR: Objectives

Priority 8

End use equipment

Consequences for End use equipment with H2 in NG

Partners DGC (lead), DNVGL, DBI, Engie, KIWA

OBJECTIVES

- To develop a status review on the use of H2 and H2NG blends for End Use equipment above 20% H2
- To clarify the need for amendments and the need for new standardization. (PNR)

ISSUES TO BE ADDRESSED

- Safe operation
- Environmental impact
- Energy efficiency
- Overall performances of the end use equipment for the service it is designed for

SCOPE

- Domestic and commercial
- Mobility

Exploitation of the first results

Synergy with other projects – GERG PNR: What is pre-normative research?

PNR = Research undertaken prior to standardization

- 1. Understanding the impact of H2 on appliances in order to allow the development of test methods & standards
- 2. Investigating appliances or aspects that are not yet covered in the literature
- **3. Developing methods to test appliances** to assess the safety, emission, efficiency, fitness for purpose, taking into account the specific requirements of H2.

GOAL OF THE GERG PROJECT = ESTABLISH THE STATE OF THE ART (about sensitivity to H2) AND IDENTIFY PNR NEEDS

Exploitation of the first results

Synergy with other projects – GERG PNR: **Example of identified PNR topics**

H2NG / H2 / both	Торіс	Gap in knowledge to fill or challenge to tackle	Proposed solution(s)
Both	appliances / Delayed		Investigate the relevant properties of H2NG and risks associated
H2NG	stanility	ACTALLOA FOR H $I_{\rm MIL}$ Harmonicoa critoria to dociaro fiaconació	Analyse in detail test results and experiences with FB / to adapt existing procedures.
H2NG	Adjustment of premix appliances	The adjustment of appliances when hydrogen is blended into natural gas brings a major risk for safety (CO)	R&D that would all help in proposing technical solutions (adapted adjustement. H2 sensors, etc.)

In red = point on-going

investigation in THyGA

Exploitation of the first results

Synergy with other projects – GERG PNR: Main results

- A. A lot of experimental work is still on going within THyGA. There is still some flexibility to adapt the actions
- B. Some TCs are very active to introduce "H2-ready" or "X%H2-ready" testing/certification.

- 1. Wait before starting new action: Try to incorporate some of athe action in THyGA
- 2. Coordinate as much as possible the priorities with the TC's

ENT (Adde d col	TYPE of PNR (added colum	ity (high /med iu	¥or k Pack a ↓	Chro non No.	H2NG/ H2/bo t ^t	Topic T	Gap in knowledge to fill or challenge to tackle	Research project (PNR)		
Domostic & Com	Mirring Knowledge marnifisiigis H2	1-Hiqh	WP®	17	Both	Demort ic t cummo rcial	Safety devices and controls Proper functioning afrafety devices (e.g. flame supervision by electrode or by UV cell, arfety times of burner contents, TTE ₁) -Leak-tightness, tert results for controls	Waiting for more THyGA results		
Domastic &Com	Mirring Knuulodgo 12 Heriaalal 20 peda	1-Hiqh (but waitfor THyGA)	WP\$	24	Both	Domert ic t comme rcial	Very little is known an Imag-term impact of H2 and H2 combustion an appliances. Long- term field testr (Ameland, etc.) have not shown specific izroes, but the levels of H2 wedra far user madest (in concert 10% science). Thy 50% hill bring marcinita (Inag-term test) an parzible impact an materials and putential consistences our afety and performances. Atmospheric	Waiting for more THyGA results		
Damostic &Cam	lartelletin 6, meintenen Ce ₁	1-High Zinke Jinnerd Ignafelg Jallarilie	WP\$	16	H2NG	Domest ic & comme rcial	For oxisting installed appliances that are not designed as certified for H2MG, expaning them to H2MG bring up the question of product liability and responsibility for these installed appliances. Salutionshall be founds to quarantee these foty of the user.	At the mament, it is not passible to define a PNR action, but depending on the solutions envised of there could very well be a need to develop, test and validate assement methods for the "anvite" verification that appling car can cope with H2NG.		
Domostic & Com	Cortificat inn Tort spocific. Harizantal	1-High alreak if Irrated classifier	WP8	29	Both	Demort ic & commo rcial	The test of DELATED IGHITION with H2HG may need to be adapted to the 2 of H2 in the gar Garleakage invide the appliance "Unburned gar accumulation invide the appliance freeintance to delayed ignition. Shall the	Thearstical invertigations on how to relate the blonds characteristics related to Lower Explosion Limits (LEL) and Upper Explosion Limits (UEL), Limiting Oxygen Concentrations (LOC), etc. toxafety aspects of gas appliances (delayed ignition test etc.)		
Domortic & Com	Mirring Kanulodgo ilisilyis H2	1-High Chock if in WP7	WP®	18	Both	Induur installa tiun: Mizzing	Tiqhtnazz (induar qaz lino), mart rocont rorultz zhauz cantroditary rozultz an tiqhtnazz uf a ziztinq zaalinqz un induar pipinq af qazinztallationz.	Invoztigation of natural pipe wedzealing:		
Domostic & Com		2- Modium	WP8	22	Both	Demort ic t commo rcial	The X of Luster in the flue uill increase uith injection of H2. The offect of this is not very well documented in the literature, but the following may occur: Increased risk of corrarion, impact on sensors, design of condensate evocuation, quality of conking with overs, condensate with conking hole, etc.).	The phare 1sfruch apraiect usuid be a theoretical approach, the phare 2 could be part of Iong-term or combined with long-term terting (ree pt Nr 24)		
Domostic & Com	Mirring Kanulodgo marmilinilyin H2	2- Modium	WP8	23	H2NG	Domert ic & comme rcial	Catering squipmont. Very fou investigations although there are zome similarities with damentic appliances, Large range of products (Open burners and welt burners, Mixed ovens, Overs, Builling part / parts conkers, Fryers, Salamenderst A Butseries, Bratpans, Couved burners (griddles, zolid top, pancake conkers, Barbesver) and burners (Atmarpheric Burner	Extend THyGA test program when relevant (wait for THyGA conclusion)		
Domostic & Com	Mirring Knouledge marnilinityte H2	2- Modium	WP®	27	H2NG	Demort ic & commo rcial	Fuol colls (anly nousest to chanlingios are curvered by THyGA) GHP lafrared rediant heaters Air heaters	Extend THyGA test program when relevant (wait for THyGA conclusion)		
Domostic & Com	Mirsing Knouledge marsilisiigis H2	2- Modium	WP®	28	H2NG	Demort ic t commo rcial	Cunkers are the s ocand martinvertigated segment. Here again the multiplicity of the products and campanents (Habs and avens), (burner typology) etc. results in not all canfigurations being treated.	Extend THyGA test program when relevant (wait for THyGA conclusion)		
Domostic & Com	•.	2- Madium Jingartan Ikat	WP®	15	Both	Demort ic t commo rcial	Commizzioning & maintonanco Praeoduros far installation & roplacement and maintenanco af installationstappliances/companents wing NG/H2 blands as 100%/H2. H2-roady appliances may need to bozubiet tazpoeific requirements far their commizzioning	<		
Domartic & Com	Mirsing Kanulodgo 11 Hericald 1971b	3-Leu	WP\$	19	Both	Demort ic t commo rcial	Hoat transfor canductive/radiative is impacted by the presence of hydrogen. This can be a problem for technologies based on radiation of the flame.	Waiting for more THyGA results		
Domostic & Com	Mirsing Knuulodgo ilisilyis H2	3-Leu	WP8	25	Both	Demost ic t commo rcial	Same data far same appliances. Increase af naire that may nat be an issue, but clase ta threshalds as far example ErP	Torting appliancer for noire at different % of H2		
Domostic & Com	Kanuladge	3-Lou (for 20%)	WP8	26	Both	Demort ic t commo rcial	Arport of the flame . Not well documented in literature. Especially important is the impact on the flame for appliances with a decorative function. See THyGA. How to evaluate by terting if the flame aspectis acceptable?	Waiting for more THyGA results		
Dom <i>os</i> tic & Com	Cortificat imm Tost spocific. Harizantal	3-Lou or modium (20%)	WP®	21	Both	Demort ic t commo rcial	OVERALL rearmably documented, but still ant 100% clarity.lqaition (cold and hat)	Waiting for more THyGA results		

16-12-2021

Conclusions

Conclusions, so far (interim results)

Existing installed appliances

From a technical perspective, a **future injection of 20% of H2 in existing natural gas grids seems today to be a reasonable hypothesis** for the domestic and commercial appliances treated in the study.

- A main technical challenge is the adjustment of appliances with gas containing hydrogen. Technical solutions are probably possible, but need to be developed maybe in relation with the new gas quality class system? (see harmonisation of gas quality)
- Sudden variations of H2 % seems not to be an issue, but this conclusion is only valid for boilers & cookers etc. and not for engine-based technologies or FC.

Still some technical "grey" areas, from the actual knowledge there is still a lot of uncertainties (part of them would be clarified in THyGA) such as:

- New technologies: especially those with other burner technologies or features not present in the tests until now.
- Long-term effects of hydrogen addition to natural gas.
- Aspects not yet treated in literature and THyGA (delayed ignition etc.)
- There are still uncertainties but maybe the main issue today is liability and responsibility when exposing appliances to gases they are not certified for (not in the scope of THYGA ☺)

Conclusions, so far (<u>interim results</u>) New appliances

New appliances ("H2 ready") will be covered by a **new certification** that should guarantee the safety.

The certification of H2 ready appliances needs **development of appropriate test methods**. Some are presently under development in TCs (see also WP4 of THyGA)

Possible technical developments for combustion controls of H2NG blends will need a **re-assessing of the safety of fully premix burners when air gas ratio is becoming constant**.

https://www.dbi-gruppe.de/h2ready.html

Worcester Bosch and BDR Thermea are developing hydrogen ready boilers https://www.h2bulletin.com/the-hydrogen-ready-boiler-market/

Any question?

HyDelta

Julio Garcia-Navarro

HyDelta highlights

THyGA workshop Julio Garcia-Navarro 15-Dec-2021

Project consortium

HyDelta

Slide 163

Hyway27 was approved NG pipeline (Gronings gas) On **21 September** it was **announced** that there will be €750M NG pipeline (high caloric gas) Industry clusters

Hydrogen in NL

- reserved for the construction of the national hydrogen infrastructure
- 2. **15 GW** of transport capacity will be made available before 2030
- 2. National government released the multi-annual programs of:
 - 1. National Hydrogen Program (**NWP**) (**07-Jul**)
 - 2. Infrastructure for Energy & Climate (MIEK) (26-Nov)
 - Both show the **trajectories** to be taken by the government to support the development of Dutch hydrogen economy (between 2022 and 2025).
- National project overview: 130+ hydrogen projects (status May 2021), 3. including:
 - Salt cavern storage (Zuidwending) 1.
 - 2. H2 **mobility** – HRS, buses, trucks, cars
 - 3. Hydrogen in **homes**

1.

1.

Offshore hydrogen production 4.

Beyond HyDelta – recent milestones about H2 in NL

Slide 164

HyDelta project overview – research questions

Delta

Some results and milestones achieved (1/3)

Some results from the project

Looking at **simulations** to understand the **effect** of **H2** on equipment – **erosion rate** of metallic pipes, **noise** levels, etc.

Quantifying the safety of hydrogen installations in homes – comparing with existing NG risk & checking the response of pressure reducers for hydrogen

Type of pipeline	Natural gas	Hydrogen	100
	Max. leakage (dm ³ /h)	Max. leakage (dm ³ /h)	(1) n
Main pipelines	5,0	5,0	- Aller
Connection pipe - new	0,2	0,2	
Connection pipe - existing	1,0	0,7	4
Meter-connections	0,1	0,1	2

Analyzing value chains to identify hurdles and windfalls of green H_2 – focus on carriers (e.g, NH3) from various pathways

Some results and milestones achieved (2/3)

HyDelta

Some results from the project

Testing of **shut-off valves** – several valves from the **existing NG transmission** network are being **tested** for safe **operation** with **H2** at **67 bar**

Looking at the **current demand** for **personnel** towards 2050 and beyond to **work** on the **conversion** of the **NG network to H2**.

- 2030-2040

Gasunie: 573 fte's per year for construction of hydrogen backbone.

- 2040-2050

Regional network operators: 0-161 fte's per year for modification of gas distribution network.

- >2050

Regional network operators: 0-161 fte's per year for modification of gas distribution network.

Slide 167

Some results and milestones achieved (3/3)

Some results from the project

Assessing hydrogen

odorized (i.e., low

pressure) network

long-term stability for

safety operations in the

Proposing rollout of potential mandatory blending quota schemes for H2 in different scenarios and various actors

Proposal:	1: Industrial	2: Gases	3: Fuels	
Market sectors	(Specific) industrial applications (e.g. ammonia, methanol, refineries)	Gas suppliers	Fuel suppliers for transport applications	
Obligated Target parties	End-user: Industries consuming hydrogen	Suppliers: Gas suppliers	Suppliers: Fuel suppliers that deliver more than 500.000 litres, kg or Nm ³ of fuel annually	
Base of quota	% of total H ₂ used in processes	% of total gas delivered	% of their total taxed fuels (GJ) supplied	
Accepted quota energy carriers	 Renewable H₂ (Low-carbon H₂) 	 Renewable H₂ (Biomethane) (Synthetic methane) 	 Current accepted renewable fuels Renewable H₂ 	

Continuing the **risk assessment** for hydrogen in the distribution grid towards transport of 100% hydrogen

Local situation Mitigating action: Input QRA Model ഷി (A) ance ar Chance Effect Output : Quantitative risk Recommendation 2 2 odorants – looking at the 8

Slide 168

Active (inter)national collaborations

Internal HyDelta survey on active (inter)national collaborations

The HyDelta consortium has established collaboration with 52 institutions from different countries and sectors

Thank you for your attention!

Julio Garcia-Navarro Project coordinator j.garcia@newenergycoalition.org

youtube.com/channel/hydelta

THyGA Workshop Next steps

December 15th 2021

Testing Hydrogen admixture for Gas Applications

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 874983. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

à

THyGA project: next steps

Communication and disseminations activities so far

- Public deliverables & events
 - D2.1: Market segmentation of domestic and commercial natural gas appliances
 - ✓ D2.2: Impact of hydrogen admixture on combustion processes Part 1: Theory + Workshop
 - ✓ D2.3: Impact of hydrogen admixture on combustion processes Part 2: Practice
 - ✓ **D2.4**: Non-combustion related impact of hydrogen admixture material compatibility + Workshop
 - D2.5: Testing programme for hydrogen tolerance tests of domestic and commercial natural gas appliances
 - D3.5: Intermediate segment of technologies by segment report on the impact of the different H2 concentrations on safety, efficiency, emissions and correct operation January 2022 + Workshop
 - ✓ **D3.6**: Intermediate long-term effect of H2 on appliances tested January 2022
 - ✓ **D4.1** Certification & standardization framework
 - ✓ D4.2 Overview of relevant existing certification experience and on-going standardization activities NEW + Workshop
- THyGA Newsletter: distribution through GERG Mailing, Social media, THyGA and GERG websites; included in the FCHJU newsletter
- Publications, ex: <u>`THyGA Burning Bright'</u>, Global Voice of Gas by the International Gas Union,
- Participation in conferences: IGRC, Wind Meet Gas, FCH JU review days, GERG's 60 years...

THyGA project: next steps

What is expected in the newt months

- WP3: A lot of tests !! The road is still long until the end of the test plan but the results will be analyzed and sent regularly to the Industry (advisory panel group, Technical Committees)
 - Disclosure of the results on « non combustion » test (leakage tests)
 - A public workshop will be held in T4 2022
- WP4: many discussions about the best way to provide effective support for standardization and certification.
 - A public workshop will be held in T3 2022
- WP5: a new and interesting topic for the THyGA partners and the industry
 - You can also expect a public Workshop in T4 2022
- WP6: a relentless activity !
 - Participation to conference, scientific publication, animation of the communication about the partner's progresses
 - To finalize the project \rightarrow Public final workshop in December 2022

THyGA project: next steps Interim results

- The presentation and replay of the workshop will be available on the THyGA project website soon
- We will add a Q/A document for the questions we couldn't answer in direct
- A big **THANK YOU**
 - to the FCH JU's and European Commission for supporting THyGA ans its activities
 - But also today's presenters, and especially the colleagues from GRHYD, HIGGS, HyDelta and HyDeploy
 - Isabelle ALLIAT (<u>isabelle.alliat@engie.com</u>)
 - Julio GARCIA-NAVARRO (j.garcia@newenergycoalition.org)
 - Alexandra KOSTEREVA (<u>alexandra.kostereva@gerg.eu</u>)
 - Jörg LEICHER (joerg.leicher@gwi-essen.de)
 - Adam MADGETT (<u>amadgett@northerngas.co.uk</u>)
 - Javier SANCHEZ LAINEZ (jsanchez@hidrogenoaragon.org)
 - Jean SCHWEITZER (jsc@dgc.dk)
 - And of course, to all stakeholders (advisory panel group, CEN TCS, labs) helping the project since the beginning

Find Us Online

VISIT THE THyGA WEBSITE

All public presentations and deliverables of the project will be available on the <u>project website</u>

GERG LINKEDIN & WEBSITE

For regular updates, you can also follow the GERG <u>LinkedIn</u> page and <u>website</u>

CONTACT EMAIL

Do not hesitate to contact us by email at <u>contact thyga@engie.com</u>

Thank you very much for joining! See you soon for another THyGA event!

à